Citation: Fu-Zhou Wang, Su-Su Tian, Rui-Ping Li, Wei-Min Li, Chang-Le Chen. Ligand Steric Effects on Naphthyl-α-diimine Nickel Catalyzed α-Olefin Polymerization[J]. Chinese Journal of Polymer Science, ;2018, 36(2): 157-162. doi: 10.1007/s10118-018-2038-6 shu

Ligand Steric Effects on Naphthyl-α-diimine Nickel Catalyzed α-Olefin Polymerization

  • Naphthyl-α-diimine nickel complexes with systematically varied ligand sterics, activated by modified methylaluminoxane (MMAO), were tested in the polymerization of higher α-olefin (1-hexene, 1-decene and 1-hexadecene) under suitable conditions. The polymerization results indicated the possibility of precise microstructure control, depending on catalyst structure, polymerization temperature, monomer concentration and types of monomers, which in turn strongly affects the resultant polymer properties. Naphthyl-α-diimine nickel complex bearing chiral bulky sec-phenethyl groups in the o-naphthyl position showed good catalytic activity, and resulted in branched polymers (42-88/1000C) with high molecular weights (Mn:(4.3-15.2)×104 g·mol-1) and narrow molecular weight distribution (Mw/Mn=1.13-1.29, RT), which suggested a living polymerization. The increasing steric hindrance of catalyst leads to enhance insertion for 2, 1-insertion of α-olefin and the chain-walking reaction.
  • 加载中
    1. [1]

      Killian C. M., Tempel D. J., Johnson L. K., Brookhart M.. Living polymerization of α-olefins Ni(Ⅱ)-α-diimine catalysts[J]. synthesis of new block polymers based on α-olefins. J. Am. Chem. Soc., 1996,118(46):11664-11665.

    2. [2]

      Gates D. P., Svejda S. A., Oñate E., Killian C. M., Johnson L. K., White P. S., Brookhart M.. Synthesis of branched polyethylene using (α-diimine)nickel(Ⅱ) catalysts:influence of temperature, ethylene pressure, and ligand structure on polymer properties[J]. Macromolecules, 2000,33(7):2320-2334. doi: 10.1021/ma991234+

    3. [3]

      Ittel S. D., Johnson L. K., Brookhart M.. Late-metal catalysts for ethylene homo-and copolymerization[J]. Chem. Rev., 2000,100(4):1169-1204. doi: 10.1021/cr9804644

    4. [4]

      Guan Z., Popeney C. S.. Recent progress in late transition metal α-diimine catalysts for olefin polymerization[J]. Top. Organomet. Chem., 2009,26:179-220. doi: 10.1007/978-3-540-87751-6

    5. [5]

      Dong Z., Ye Z.. Hyperbranched polyethylenes by chain walking polymerization:synthesis, properties, functionalization, and applications[J]. Polym. Chem., 2012,3(2):286-301. doi: 10.1039/C1PY00368B

    6. [6]

      Takeuchi D.. Stereo-controlled synthesis of polyolefins with cycloalkane groups by using late transition metals[J]. Polym. J., 2012,44(9):919-928. doi: 10.1038/pj.2012.27

    7. [7]

      Weberski M. P., Chen C., Delferro M., Zuccaccia C., Macchioni A., Marks T. J.. Suppression of β-hydride chain transfer in nickel(Ⅱ)-catalyzed ethylene polymerization via weak fluorocarbon ligandproduct interactions[J]. Organometallics, 2012,31(9):3773-3789. doi: 10.1021/om3002735

    8. [8]

      Sui X. L., Dai S. Y., Chen C. L.. Ethylene polymerization and copolymerization with polar monomers by cationic phosphine phosphonic amide palladium complexes[J]. ACS Catal., 2015,5(10):5932-5937. doi: 10.1021/acscatal.5b01490

    9. [9]

      Chen M., Yang B. P., Chen C. L.. Redox-controlled olefin (co)polymerization catalyzed by ferrocene-bridged phosphinesulfonate palladium complexes[J]. Angew. Chem. Int. Ed., 2015,54(51):15520-15524. doi: 10.1002/anie.201507274

    10. [10]

      Chen M., Zou W. P., Cai Z. G., Chen C. L.. Norbornene homopolymerization and copolymerization with ethylene by phosphine-sulfonate nickel catalysts[J]. Polym. Chem., 2015,6(14):2669-2676. doi: 10.1039/C5PY00010F

    11. [11]

      Liang T., Chen C. L.. Side-arm control in phosphine-sulfonate palladium-and nickel-catalyzed ethylene polymerization and copolymerization[J]. Organometallics, 2017,36(12):2338-2344. doi: 10.1021/acs.organomet.7b00294

    12. [12]

      Chen M., Chen C. L.. Rational design of high-performance phosphine sulfonate nickel catalysts for ethylene polymerization and copolymerization with polar monomers[J]. ACS Catal., 2017,7(2):1308-1312. doi: 10.1021/acscatal.6b03394

    13. [13]

      Jian Z., Falivene L., Boffa G., Sánchez S. O., Caporaso L., Grassi A., Mecking S.. Direct synthesis of telechelic polyethylene by selective insertion polymerization[J]. Angew. Chem., 2016,55(46):14378-14383. doi: 10.1002/anie.v55.46

    14. [14]

      Ota Y., Ito S., Kobayashi M., Kitade S., Sakata K., Tayano T., Nozaki K.. Crystalline isotactic polar polypropylene from the palladium-catalyzed copolymerization of propylene and polar monomers[J]. Angew. Chem., 2016,128(26):7631-7635. doi: 10.1002/ange.201600819

    15. [15]

      Guo L. H., Chen C. L.. (α-Diimine)palladium catalyzed ethylene polymerization and (co)polymerization with polar comonomers[J]. Sci. China Chem., 2015,58(11):1663-1673. doi: 10.1007/s11426-015-5433-7

    16. [16]

      Guo L. H., Dai S. Y., Sui X. L., Chen C. L.. Palladium and nickel catalyzed chain walking olefin polymerization and copolymerization[J]. ACS Catal., 2016,6(1):428-441. doi: 10.1021/acscatal.5b02426

    17. [17]

      Zhang D. F., Nadres E. T., Brookhart M., Daugulis O.. Synthesis of highly branched polyethylene using "sandwich" (8-p-tolyl naphthyl α-diimine) nickel(Ⅱ) catalysts[J]. Organometallics, ,32(18):5136-5143. doi: 10.1021/om400704h

    18. [18]

      Vaidya T., Klimovica K., LaPointe A. M., Keresztes I., Lobkovsky E. B., Daugulis O., Coates , G. W.. Secondary alkene insertion and precision chain-walking:a new route to semicrystalline "polyethylene" from α-olefins by combining two rare catalytic events.[J]. J. Am. Chem. Soc., 2014,136(20):7213-7216. doi: 10.1021/ja502130w

    19. [19]

      Chen C., Luo S., Jordan R. F.. Multiple insertion of a silyl vinyl ether by (α-diimine)PdMe+ species[J]. J. Am. Chem. Soc., 2008,130(39):12892-12893. doi: 10.1021/ja8056858

    20. [20]

      Chen C., Luo S., Jordan R. F.. Cationic polymerization and insertion chemistry in the reactions of vinyl ethers with (α-diimine) PdMe+ species[J]. J. Am. Chem. Soc., 2010,132(14):5273-5284. doi: 10.1021/ja100491y

    21. [21]

      Dai S.Y., Sui X. L., Chen C. L.. Highly robust palladium(Ⅱ) α-diimine catalysts for slow-chain-walking polymerization of ethylene and copolymerization with methyl acrylate[J]. Angew. Chem., 2015,127(34):10086-10091. doi: 10.1002/ange.201503708

    22. [22]

      Dai S. Y., Chen C. L.. Direct synthesis of functionalized highmolecular-weight polyethylene bycopolymerizationofethylene with polar monomers[J]. Angew. Chem. Int. Ed., 2016,55(42):13281-13285. doi: 10.1002/anie.201607152

    23. [23]

      Li M., Wang X. B., Luo Y., Chen C. L.. A secondcoordination-sphere strategy to modulate nickel-and palladium-catalyzed olefin polymerization and copolymerization[J]. Angew. Chem. Int. Ed., 2017,56(38):11604-11609. doi: 10.1002/anie.v56.38

    24. [24]

      Dai S. Y., Zhou S. X., Zhang W., Chen C. L.. Systematic investigations of ligand steric effects on α-diimine palladium catalyzed olefin polymerization and copolymerization[J]. Macromolecules, 2016,49(23):8855-8862. doi: 10.1021/acs.macromol.6b02104

    25. [25]

      Lian K., Zhu Y., Li W., Dai S. Y., Chen C. L.. Direct synthesis of thermoplastic polyolefin elastomers from nickel-catalyzed ethylene polymerization[J]. Macromolecules, 2017,50(16):6074-6080. doi: 10.1021/acs.macromol.7b01087

    26. [26]

      Wang R. K., Zhao M. H., Chen C. L.. Influence of ligand second coordination sphere effects on the olefin (co)polymerization properties of α-diimine Pd(Ⅱ) catalysts[J]. Polym. Chem.,, 2016,7(23):3933-3938. doi: 10.1039/C6PY00750C

    27. [27]

      Guo L. H., Dai S. Y., Chen C. L.. Investigations of the ligand electronic effects on α-diimine nickel(Ⅱ) catalyzed ethylene polymerization[J]. Polymers, 2016,8(2)37. doi: 10.3390/polym8020037

    28. [28]

      Zhu L., Fu Z. S., Pan H. J., Feng W., Chen C. L., Fan Z. Q.. Synthesis and application of binuclear α-diimine nickel/palladium catalysts with a conjugated backbone[J]. Dalton Trans., 2014,43(7):2900-2906. doi: 10.1039/C3DT51782A

    29. [29]

      Na Y. N., Zhang D., Chen C. L.. Modulating the polyolefin properties through the incorporation of nitrogen-containing polar monomers[J]. Polym. Chem., 2017,8(15):2405-2409. doi: 10.1039/C7PY00127D

    30. [30]

      Zou W., Chen C.. Influence of backbone substituents on the ethylene (co)polymerization properties of α-diimine Pd(Ⅱ) and Ni(Ⅱ) catalysts[J]. Organometallics, 2016,35(11):1794-1801. doi: 10.1021/acs.organomet.6b00202

    31. [31]

      Wang F. Z., Yu an, J , C.; Li Q. S., Tanaka R., Nakayama Y., Shiono T.. New nickel(Ⅱ) diimine complexes bearing phenyl and sec-phenethyl groups:synthesis, characterization and ethylene polymerization, behaviour[J]. Appl. Organometal. Chem., 2014,28(7):477-483. doi: 10.1002/aoc.v28.7

    32. [32]

      Wang F. Z., Tanaka R., Li Q. S., Yuan J. C., Nakayama Y., Shiono T.. Synthesis and application of α-diimine Ni(Ⅱ) and Pd(Ⅱ) complexes with bulky steric groups to polymerization of ethylene and methyl methacrylate[J]. J. Mol. Catal. A Chem., 2015,398(398):231-240.

    33. [33]

      Hu X. H., Dai S. Y., Chen C. L.. Ethylene polymerization by salicylaldimine nickel(Ⅱ) complexes containing a dibenzhydryl moiety[J]. Dalton Trans., 2016,45(4):1496-1503. doi: 10.1039/C5DT04408A

    34. [34]

      Sui X. L., Hong C. W., Pang W. M., Chen C. L.. Unsymmetrical α-diimine palladium catalysts and their properties in olefin (co)polymerization[J]. Mater. Chem. Front., 2017,1(5):967-972. doi: 10.1039/C6QM00235H

    35. [35]

      Wang R. K., Sui X. L., Pang W. M., Chen C. L.. Ethylene polymerization by xanthene-bridged dinuclear α-diimine NiⅡ complexes[J]. ChemCatChem, 2016,8(2):434-440. doi: 10.1002/cctc.201501041

    36. [36]

      Na Y. N., Wang X., Lian K., Zhu Y., Li W., Luo Y., Chen C. L.. Dinuclear α-diimine Ni and Pd complexes that catalyze ethylene polymerization and copolymerization[J]. ChemCatChem., 2017,9(6):1062-1066. doi: 10.1002/cctc.v9.6

    37. [37]

      Rhinehart J. L., Brown L. A., Long B. K.. A robust Ni(Ⅱ) α-diimine catalyst for high temperature ethylene polymerization[J]. J. Am. Chem. Soc., 2013,135(44):16316-16319. doi: 10.1021/ja408905t

    38. [38]

      Long B. K., Eagan J. M., Mulzer M., Coates G. W.. Semi-crystalline polar polyethylene:ester-functionalized linear polyolefins enabled by a functional-group-tolerant, cationic nickel catalyst[J]. Angew. Chem. Int. Ed., 2016,55(25):7106-7110. doi: 10.1002/anie.201601703

    39. [39]

      Chen Z., Liu W., Daugulis O., Brookhart M.. Mechanistic studies of Pd(Ⅱ)-catalyzed copolymerization of ethylene and vinylalkoxysilanes:Evidence for a β-silyl elimination chain transfer mechanism[J]. J. Am. Chem. Soc., 2016,138(49):16120-16129. doi: 10.1021/jacs.6b10462

    40. [40]

      Talebnezhad S., Pourmahdian S.. Multi-walled carbon nanotubes as a ligand in nickel α-diimine based ethylene polymerization[J]. Chinese J. Polym. Sci., 2015,33(10):1389-1403. doi: 10.1007/s10118-015-1696-x

    41. [41]

      Liu B., Fang M. Z., Jie S. Y., Bu Z. Y., Li B. G.. Nickel(Ⅱ) α-diimine catalysts with carboxyl groups for ethylene oligomerization and polymerization[J]. Chinese J. Polym. Sci., 2016,34(2):221-228. doi: 10.1007/s10118-016-1734-3

    42. [42]

      Liu F. S., Gao H. Y., Hu Z. L., Hu H. B., Zhu F. M., Wu Q.. Poly(1-hexene) with long methylene sequences and controlled branches obtained by a thermostable α-diimine nickel catalyst with bulky camphyl backbone[J]. J. Polym. Sci., Part A:Polym. Chem., 2012,50(18):3859-3866. doi: 10.1002/pola.v50.18

    43. [43]

      Liu J., Chen D. R., Wu H., Xiao Z. F., Gao H. Y., Zhu F. M., Wu Q.. Polymerization of α-olefins using a camphyl α-diimine nickel catalyst at elevated temperature[J]. Macromolecules, 2014,47(10):3325-3331. doi: 10.1021/ma5004634

    44. [44]

      Cherian A. E., Rose J. M., Lobkovsky E. B., Coates G. W. J.. A C2-symmetric, living α-diimine Ni(Ⅱ) catalyst:regioblock copolymers from propylene[J]. J. Am. Chem. Soc., 2005,127(40):13770-13771. doi: 10.1021/ja0540021

    45. [45]

      Rose J. M., Cherian A. E., Coates G. W.. Living polymerization of α-olefins with an α-diimine Ni(Ⅱ) catalyst:formation of well-defined ethylene-propylene copolymers through controlled chain-walking[J]. J. Am. Chem. Soc., 2006,128(13):4186-4187. doi: 10.1021/ja058183i

    46. [46]

      Dai S. Y., Sui X. L., Chen C. L.. Synthesis of high molecular weight polyethylene using iminopyridyl nickel catalysts[J]. Chem. Commun., 2016,52(58):9113-9116. doi: 10.1039/C6CC00457A

    47. [47]

      Wang F. Z., Tanaka R., Cai Z. G., Nakayama Y., Shiono T.. Precision chain-walking polymerization of trans-4-octene catalyzed by α-diimine nickel(Ⅱ) catalysts bearing ortho-sec-phenethyl groups[J]. Macromol. Rapid Commun., 2016,37(16):1375-1381. doi: 10.1002/marc.v37.16

    48. [48]

      Wang F. Z., Yuan J. C., Song F. Y., Li J., Jia Z., Yuan B. N.. New chiral α-diimine nickel(Ⅱ) complexes bearing ortho-sec-phenethyl groups for ethylene polymerization[J]. Appl. Organomet. Chem., 2013,27(6):319-327. doi: 10.1002/aoc.v27.6

    49. [49]

      Yuan J. C., Wang F. Z., Xu W. B., Mei T. J., Li J., Yuan B. N., Song F. Y., Jia Z.. Chiral naphthyl-α-diimine nickel(Ⅱ) catalysts bearing sec-phenethyl groups:chain-walking polymerization of ethylene at high temperature and stereoselective polymerization of methyl methacrylate at low temperature[J]. Organometallics, 2013,32(14):3960-3968. doi: 10.1021/om400433t

    50. [50]

      McCord E. F., McLain S. J., Nelson L. T. J., Ittel S. D., Tempel D., Killian C. M., Johnson L. K., Brookhart M.. 13C-NMR analysis of α-olefin enchainment in poly(α-olefins) produced with nickel and palladium α-diimine catalysts[J]. Macromolecules, 2007,40(3):410-420. doi: 10.1021/ma061547m

  • 加载中
    1. [1]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    2. [2]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    3. [3]

      Jing ZhangCharles WangYaoyao ZhangHaining XiaYujuan WangKun MaJunfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420

    4. [4]

      Cong GaoZijian ZhuSiwei LiZheng XiQingqing SunJie HanRong Guo . Chiral supramolecular catalysts of helical nanoribbon: More twist, higher enantioselectivity. Chinese Chemical Letters, 2025, 36(3): 109968-. doi: 10.1016/j.cclet.2024.109968

    5. [5]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    6. [6]

      Jun-Yi Wang Jue-Yu Bao Zheng-Guang Wu Zheng-Yin Du Xunwen Xiao Xu-Feng Luo . Recent progress in steric modulation of MR-TADF materials and doping concentration independent OLEDs with narrowband emission. Chinese Journal of Structural Chemistry, 2025, 44(1): 100451-100451. doi: 10.1016/j.cjsc.2024.100451

    7. [7]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    8. [8]

      Lan YangYu LiMou JiangRui ZhouHengjiang CongMinghui YangLei ZhangShenhui LiYunhuang YangMaili LiuXin ZhouZhong-Xing JiangShizhen Chen . Fluorinated [2]rotaxanes as sensitive 19F MRI agents: Threading for higher sensitivity. Chinese Chemical Letters, 2024, 35(10): 109512-. doi: 10.1016/j.cclet.2024.109512

    9. [9]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    10. [10]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

    11. [11]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    12. [12]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    13. [13]

      Botao GaoHe QiHui LiuJun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598

    14. [14]

      Xin Huang Yi Zhao Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278

    15. [15]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    16. [16]

      Ziyou ZhangTe JiHongliang DongZhiqiang ChenZhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542

    17. [17]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    18. [18]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    19. [19]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    20. [20]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

Metrics
  • PDF Downloads(0)
  • Abstract views(765)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return