Citation: Xu-Lin Yang, Kui Li, Ming-Zhen Xu, Xiao-Bo Liu. Designing a Phthalonitrile/Benzoxazine Blend for the Advanced GFRP Composite Materials[J]. Chinese Journal of Polymer Science, ;2018, 36(1): 106-112. doi: 10.1007/s10118-018-2033-y shu

Designing a Phthalonitrile/Benzoxazine Blend for the Advanced GFRP Composite Materials

  • High performance resin must be used in the high performance glass fiber-reinforced plastic (GFRP) composites, but it is sometimes difficult to balance the processabilities and the final properties in the design of advanced thermoset GFRP composites. In this study, a phthalonitrile/benzoxazine (PPN/BZ) blend with excellent processability has been designed and applied in the GFRP composite materials. PPN/BZ blend with good solubility, low melt viscosity, appropriate gel condition and low-temperature curing behavior could enable their GFRP composite preparation with the prepreg-laminate method under a relatively mild condition. The resulted PPN/BZ GFRP composites exhibit excellent mechanical properties with flexural strength over 700 MPa and flexural modulus more than 19 GPa. Fracture surface morphologies of the PPN/BZ GFRP composites show that the interfacial adhesion between resin and GF is improved. The temperatures at weight loss 5% (T5%) and char residue at 800℃ of all PPN/BZ GFRP composites are over 435℃ and 65% respectively. PPN/BZ GFRP composites with high performance characteristics may find applications under some critical circumstances with requirements of high mechanical properties and high service temperatures.
  • 加载中
    1. [1]

      Hensher, D. A. "Fiber-reinforced-plastic (FRP) reinforcement for concrete structures: properties and applications", Elsevier, Netherlands, 2016, p. 34.

    2. [2]

      Yazdanbakhsh A., Bank L. C.. A critical review of research on reuse of mechanically recycled FRP production and end-of-life waste for construction[J]. Polymers, 2014,6(6):1810-1826. doi: 10.3390/polym6061810

    3. [3]

      Raja R. S., Manisekar K., Manikandan V.. Study on mechanical properties of fly ash impregnated glass fiber reinforced polymer composites using mixture design analysis[J]. Mater. Des., 2014,55:499-508. doi: 10.1016/j.matdes.2013.10.026

    4. [4]

      Kempf M., Skrabala O., Altstädt V.. Acoustic emission analysis for characterisation of damage mechanisms in fibre reinforced thermosetting polyurethane and epoxy[J]. Compos. Part B-Eng., 2014,56:477-483. doi: 10.1016/j.compositesb.2013.08.080

    5. [5]

      Al-Hadhrami L. M., Maslehuddin M., Ali M. R.. Chemical resistance and mechanical properties of glass fiber-reinforced plastic pipes for oil, gas, and power-plant applications[J]. J. Compos. Constr., 2015,20(1). doi: 10.1061/(ASCE)CC.1943-5614.0000592

    6. [6]

      Wang X., Shi J. Z., Liu J. X., Yang L., Wu Z. S.. Creep behavior of basalt fiber reinforced polymer tendons for prestressing application[J]. Mater. Des., 2014,59:558-564. doi: 10.1016/j.matdes.2014.03.009

    7. [7]

      Frey M., Brunner A. J.. Assessing glass-fiber modification developments by comparison of glass-fiber epoxy composites with reference materials:some thoughts on relevance[J]. P. I. Mech. Eng. L. J. Mat., 2017,231(1-2):49-54.  

    8. [8]

      Viets C., Kaysser S., Schulte K.. Damage mapping of GFRP via electrical resistance measurements using nanocomposite epoxy matrix systems[J]. Compos. Part B-Eng., 2014,65:80-88. doi: 10.1016/j.compositesb.2013.09.049

    9. [9]

      Sui X. H., Shi J., Yao H. W., Xu Z. W., Chen L., Li X. J., Ma M. J., Kuang L. Y., Fu H. J., Deng H.. Interfacial and fatigue-resistant synergetic enhancement of carbon fiber/epoxy hierarchical composites via an electrophoresis deposited carbon nanotube-toughened transition layer[J]. Compos. Part A-Appl. S., 2017,92:134-144. doi: 10.1016/j.compositesa.2016.11.004

    10. [10]

      Jiang Z., Zhang H., Zhang Z., Murayama H., Okamoto K.. Improved bonding between PAN-based carbon fibers and fullerene-modified epoxy matrix[J]. Compos. Part A-Appl. S., 2008,39(11):1762-1767. doi: 10.1016/j.compositesa.2008.08.005

    11. [11]

      Kornmann X., Rees M., Thomann Y., Necola A., Barbezat M., Thomann R.. Epoxy-layered silicate nanocomposites as matrix in glass fibre-reinforced composites[J]. Compos. Sci. Technol., 2005,65(14):2259-2268. doi: 10.1016/j.compscitech.2005.02.006

    12. [12]

      Yang X. L., Wang Z. C., Xu M. Z., Zhao R., Liu X. B.. Dramatic mechanical and thermal increments of thermoplastic composites by multi-scale synergetic reinforcement:carbon fiber and graphene nanoplatelet[J]. Mater. Des., 2013,44:74-80. doi: 10.1016/j.matdes.2012.07.051

    13. [13]

      Laskoski M., Dominguez D. D., Keller T. M.. Synthesis and properties of a bisphenol A based phthalonitrile resin[J]. J. Polym. Sci., Part A:Polym. Chem., 2005,43(18):4136-4143. doi: 10.1002/(ISSN)1099-0518

    14. [14]

      Laskoski M., Dominguez D. D., Keller T. M.. Synthesis and properties of aromatic ether phosphine oxide containing oligomeric phthalonitrile resins with improved oxidative stability[J]. Polymer, 2007,48(21):6234-6240. doi: 10.1016/j.polymer.2007.08.028

    15. [15]

      Cao G. P., Chen W. J., Wei J. J., Li W. T., Liu X. B.. Synthesis and characterization of a novel bisphthalonitrile containing benzoxazine[J]. Express Polym. Lett., 2007,1(8):512-518. doi: 10.3144/expresspolymlett.2007.73

    16. [16]

      Zhou H., Badashah A., Luo Z. H., Liu F., Zhao T.. Preparation and property comparison of ortho, meta, and para autocatalytic phthalonitrile compounds with amino group[J]. Polym. Adv. Technol., 2011,22(10):1459-1465. doi: 10.1002/pat.v22.10

    17. [17]

      Derradji M., Ramdani N., Zhang T., Wang J., Feng T. T., Wang H., Liu W. B.. Mechanical and thermal properties of phthalonitrile resin reinforced with silicon carbide particles[J]. Mater. Des., 2015,71:48-55. doi: 10.1016/j.matdes.2015.02.001

    18. [18]

      Sastri S. B., Keller T. M.. Phthalonitrile cure reaction with aromatic diamines[J]. J. Polym. Sci., Part A:Polym. Chem., 1998,36(11):1885-1890. doi: 10.1002/(ISSN)1099-0518

    19. [19]

      Yang X. L., Zhan Y. Q., Zhao R., Liu X. B.. Effects of graphene nanosheets on the dielectric, mechanical, thermal properties, and rheological behaviors of poly(arylene ether nitriles)[J]. J. Appl. Polym. Sci., 2012,124(2):1723-1730. doi: 10.1002/app.35209

    20. [20]

      Zhang Z. B., Li Z., Zhou H., Lin X. K., Zhao T., Zhang M. Y., Xu C. H.. Self-catalyzed silicon-containing phthalonitrile resins with low melting point, excellent solubility and thermal stability[J]. J. Appl. Polym. Sci., 2014,131(20). doi: 10.1002/APP.40919

    21. [21]

      Zhao X., Lei Y. J., Zhao R., Zhong J. C., Liu X.. Preparation and properties of halogen-free flame-retarded phthalonitrile-epoxy blends[J]. J. Appl. Polym. Sci., 2012,123(6):3580-3586. doi: 10.1002/app.v123.6

    22. [22]

      Nair C. R.. Advances in addition-cure phenolic resins[J]. Prog. Polym. Sci., 2004,29(5):401-498. doi: 10.1016/j.progpolymsci.2004.01.004

    23. [23]

      Dansiri N., Yanumet N., Ellis J. W., Ishida H.. Resin transfer molding of natural fiber reinforced polybenzoxazine composities[J]. Polym. Compos., 2002,23(3):352-360. doi: 10.1002/(ISSN)1548-0569

    24. [24]

      Meng F. B., Ishida H., Liu X. B.. Introduction of benzoxazine onto the graphene oxide surface by click chemistry and the properties of graphene oxide reinforced polybenzoxazine nanohybrids[J]. RSC Adv., 2014,4(19):9471-9475. doi: 10.1039/c3ra47345g

    25. [25]

      Ishida H., Allen D. J.. Mechanical characterization of copolymers based on benzoxazine and epoxy[J]. Polymer, 1996,37(20):4487-4495. doi: 10.1016/0032-3861(96)00303-5

    26. [26]

      Agag T., Takeichi T.. Synthesis and characterization of novel benzoxazine monomers containing allyl groups and their high performance thermosets[J]. Macromolecules, 2003,36(16):6010-6017. doi: 10.1021/ma021775q

    27. [27]

      Wang H. Y., Zhao P., Ling H., Ran Q. C., Gu Y.. The effect of curing cycles on curing reactions and properties of a ternary system based on benzoxazine, epoxy resin, and imidazole[J]. J. Appl. Polym. Sci., 2013,127(3):2169-2175. doi: 10.1002/app.37778

    28. [28]

      GB/T 9341-2008/ISO 178; Plastics-Determination of flexural properties. Chinese Standard Press. Beijing, 2001.

    29. [29]

      Tung C. Y. M., Dynes P. J.. Relationship between viscoelastic properties and gelation in thermosetting systems[J]. J. Appl. Polym. Sci., 1982,27(2):569-574. doi: 10.1002/app.1982.070270220

    30. [30]

      Laza J. M., Julian C. A., Larrauri E., Rodriguez M., Leon L. M.. Thermal scanning rheometer analysis of curing kinetic of an epoxy resin:an amine as curing agent[J]. Polymer, 1999,40(1):35-45. doi: 10.1016/S0032-3861(98)00217-1

    31. [31]

      Laza J. M., Vilas J. L., Mijangos F., Rodriguez M., Leon L. M.. Analysis of the crosslinking process of epoxy-phenolic mixtures by thermal scanning rheometry[J]. J. Appl. Polym. Sci., 2005,98(2):818-824. doi: 10.1002/(ISSN)1097-4628

    32. [32]

      Kalaitzidou K., Fukushima H., Drzal L. T.. Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets[J]. Carbon, 2007,45(7):1446-1452. doi: 10.1016/j.carbon.2007.03.029

    33. [33]

      Augustine D., Mathew D., Nair C. P.. Phenol-containing phthalonitrile polymers-synthesis, cure characteristics and laminate properties[J]. Polym. Int., 2013,62(7):1068-1076.

    34. [34]

      Xu M. Z., Jia K., Liu X. B.. Effect of bisphenol-A on the structures and properties of phthalonitrile-based resin containing benzoxazine[J]. Express Polym. Lett., 2015,9(6):567-581. doi: 10.3144/expresspolymlett.2015.53

    35. [35]

      Sastri S. B., Armistead J. P., Keller T.M., Sorathia U.. Phthalonitrile-glass fabric composites[J]. Polym. Compos., 1997,18(1):48-54. doi: 10.1002/(ISSN)1548-0569

    36. [36]

      Meng F. B., Zhao R., Zhan Y. Q., Liu X. B.. Design of thorn-like micro/nanofibers:fabrication and controlled morphology for engineered composite materials applications[J]. J. Mater. Chem., 2011,21(41):16385-16390. doi: 10.1039/c1jm12166a

  • 加载中
    1. [1]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    2. [2]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

    3. [3]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    4. [4]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    5. [5]

      Wantong ZhangZixing XuGuofei DaiZhijian LiChunhui Deng . Removal of Microcystin-LR in lake water sample by hydrophilic mesoporous silica composites under high-throughput MALDI-TOF MS detection platform. Chinese Chemical Letters, 2024, 35(5): 109135-. doi: 10.1016/j.cclet.2023.109135

    6. [6]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    7. [7]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    8. [8]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    9. [9]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    10. [10]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    11. [11]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    12. [12]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    13. [13]

      Xiaomeng HuJie YuLijie SunLinfeng ZhangWei ZhouDongpeng YanXinrui Wang . Synthesis of an AVB@ZnTi-LDH composite with synergistically enhance UV blocking activity and high stability for potential application in sunscreen formulations. Chinese Chemical Letters, 2024, 35(11): 109466-. doi: 10.1016/j.cclet.2023.109466

    14. [14]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    15. [15]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    16. [16]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    17. [17]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    18. [18]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    19. [19]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    20. [20]

      Jun JiangTong GuoWuxin BaiMingliang LiuShujun LiuZhijie QiJingwen SunShugang PanAleksandr L. VasilievZhiyuan MaXin WangJunwu ZhuYongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565

Metrics
  • PDF Downloads(0)
  • Abstract views(928)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return