Citation: Jie Zhao, Ru Mo, Li-Mei Tian, Ling-Jie Song, Shi-Fang Luan, Jing-Hua Yin, Lu-Quan Ren. Oriented Antibody Immobilization and Immunoassay Based on Boronic Acid-containing Polymer Brush[J]. Chinese Journal of Polymer Science, ;2018, 36(4): 472-478. doi: 10.1007/s10118-018-2031-0 shu

Oriented Antibody Immobilization and Immunoassay Based on Boronic Acid-containing Polymer Brush

  • Corresponding author: Jie Zhao, jiezhao@jlu.edu.cn
  • Received Date: 23 August 2017
    Accepted Date: 30 August 2017
    Available Online: 1 December 2017

  • High sensitive immunoassay platforms have gained intense attention due to their vital roles in early-stage disease diagnosis and therapeutic information feedback. Although random covalent-binding of antibody has been widely adopted in immunoassays due to its simplicity and effectiveness, it readily loses its activity and fails to exhibit high antigen-binding capacity. In this work, copolymer of zwitterionic sulfobetaine methacrylate (SBMA) and glycidyl methacrylate (GMA) brushes were immobilized onto inert polypropylene (PP) via surface-initiated atom transfer radical polymerization (ATRP) based on biomimetic dopamine pretreatment. Subsequently, boronic acid (BA) groups were covalently bonded via active GMA units, followed by the introduction of oriented immobilization of antibody. Owing to the oriented immobilization of antibody facilitated by BA groups in polymer brush, the bioactivity of antibody is well preserved, which endows the surface with significantly enhanced antigen-binding capacity. Moreover, the existence of SBMA segments in polymer brushes renders the surface high resistance to nonspecific protein adsorption, significantly alleviating the signal interference of antigen recognition. This strategy could find potential applications in developing high sensitive immunoassay platforms based on the different substrates.
  • 加载中
    1. [1]

      Wu Y. M., Cen Y., Huang L.J., Yu R. Q., Chu X.. Upconversion fluorescence resonance energy transfer biosensor for sensitive detection of human immunodeficiency virus antibodies in human serum[J]. Chem. Commun., 2014,50:4759-4762. doi: 10.1039/C4CC00569D

    2. [2]

      Bi X., Liu Z.. Facile preparation of glycoprotein-imprinted 96-well microplates for enzyme-linked immunosorbent assay by boronate affinity-based oriented surface imprinting[J]. Anal. Chem., 2014,86(1):959-966. doi: 10.1021/ac403736y

    3. [3]

      Gan S. D., Patel K. R.. Enzyme immunoassay and enzyme-linked immunosorbent assay[J]. J. Invest. Dermatol., 2013,133(9):1-3.  

    4. [4]

      Bae Y. M., Oh B. K., Lee W., Lee W. H., Choi J. W.. Study on orientation of immunoglobulin G on protein G layer[J]. Biosens. Bioelectron., 2005,21(1):103-110. doi: 10.1016/j.bios.2004.09.003

    5. [5]

      Bhadra P., Shajahan M. S., Bhattacharya E., Chadha A.. Studies on varying n-alkanethiol chain lengths on a gold coated surface and their effect on antibody-antigen binding efficiency[J]. RSC Adv., 2015,5(98):80480-80487. doi: 10.1039/C5RA11725A

    6. [6]

      Jung Y., Jeong J.Y., Chung B.H.. Recent advances in immobilization methods of antibodies on solid supports[J]. Analyst, 2008,133(6):697-701. doi: 10.1039/b800014j

    7. [7]

      Soellner M. B., Dickson K. A., Nilsson B. L., Raines R.T.. Site-specific protein immobilization by staudinger ligation[J]. J. Am. Chem. Soc., 2003,125(39):11790-11791. doi: 10.1021/ja036712h

    8. [8]

      Trilling A. K., Beekwilder J., Zuilhof H.. Antibody orientation on biosensor surfaces:a minireview[J]. Analyst, 2013,138(6):1619-1627. doi: 10.1039/c2an36787d

    9. [9]

      Wang Z., Jin G. J.. Feasibility of protein A for the oriented immobilization of immunoglobulin on silicon surface for a biosensor with imaging ellipsometry[J]. Biochem. Biophys. Methods, 2003,57(3):203-211. doi: 10.1016/S0165-022X(03)00109-X

    10. [10]

      Kim J., Cho J., Seidler P. M., Kurland N. E., Yadavalli V. K.. Investigations of chemical modifications of amino-terminated organic films on silicon substrates and controlled protein immobilization[J]. Langmuir,, 2010,26(4):2599-2608. doi: 10.1021/la904027p

    11. [11]

      de Juan-Franco E., Caruz A., Pedrajas J. R., Lechuga L. M.. Site-directed antibody immobilization using a protein A-gold binding domain fusion protein for enhanced SPR immunosensing[J]. Analyst, 2013,138(7):2023-2031. doi: 10.1039/c3an36498d

    12. [12]

      Wang S., Ye J., Li X., Liu Z.. Boronate affinity fluorescent nanoparticles for förster resonance energy transfer inhibition assay of cis-diol biomolecules[J]. Anal. Chem., 2016,88(10):5088-5096. doi: 10.1021/acs.analchem.5b04507

    13. [13]

      Peters J. A.. Interactions between boric acid derivatives and saccharides in aqueous media:structures and stabilities of resulting esters[J]. Coord. Chem. Rev., 2014,268(2):1-22.  

    14. [14]

      Brooks W. L., Sumerlin B. S.. Synthesis and applications of boronic acid-containing polymers:from materials to medicine[J]. Chem. Rev., 2016,116(3):1375-1397. doi: 10.1021/acs.chemrev.5b00300

    15. [15]

      Chen M. L., Adak A. K., Yeh N. C.. Fabrication of an oriented Fc-fused lectin microarray through boronate formation[J]. Angew. Chem., 2008,47(45):8627-8630. doi: 10.1002/anie.v47:45

    16. [16]

      Tan L., Xing J., Cao F., Chen L., Zhang C., Shi R., Wang Y.. Synthesis of double-hydrophilic double-grafted copolymers PMA-g-PEG/PDMA and their protein-resistant properties[J]. Chinese J. Polym. Sci., 2013,31(4):691-701. doi: 10.1007/s10118-013-1254-3

    17. [17]

      Luan S., Zhao J., Yang H., Shi H., Jin J., Li X., Liu J., Wang J., Yin J., Stagnaro P.. Surface modification of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via UV-induced graft polymerization of N-vinyl pyrrolidone[J]. J. Colloid Interf. Sci., 2012,93(1):127-134.  

    18. [18]

      Huang C. J., Li Y., Krause J. B., Brault N. D., Jiang S.. Internal architecture of zwitterionic polymer brushes regulates nonfouling properties[J]. Macromol. Rapid Commun., 2012,33:1003-1007. doi: 10.1002/marc.201100858

    19. [19]

      Chien H., Tsai C., Tsai W., Wang M. J., Kuo W. H., Wei T. C., Huang S. T.. Surface conjugation of zwitterionic polymers to inhibit cell adhesion and protein adsorption[J]. J. Colloid Interf. Sci., 2013,107(7):152-159.  

    20. [20]

      Yu Q., Zhang Y., Wang H., Brash J., Chen H.. Anti-fouling bioactive surfaces[J]. Acta Biomater., 2011,7(4):1550-1557. doi: 10.1016/j.actbio.2010.12.021

    21. [21]

      Zong M., Gong Y.. Fabrication and biocompatibility of cell outer membrane mimetic surfaces[J]. Chinese J. Polym. Sci., 2011,29(1):53-64. doi: 10.1007/s10118-010-1019-1

    22. [22]

      Zhao J., Shi Q., Luan S., Song L.. Polypropylene non-woven fabric membrane via surface modification with biomimetic phosphorylcholine in Ce(Ⅳ)/HNO3 redox system[J]. Mater. Sci. Eng. C, 2012,32(7):1785-1789. doi: 10.1016/j.msec.2012.04.057

    23. [23]

      Li Y., Zhou M., Geng C., Chen F., Fu Q.. Simultaneous improvements of thermal stability and mechanical properties of poly(propylene carbonate) via incorporation of environmental-friendly polydopamine[J]. Chinese J. Polym. Sci., 2014,32(12):1724-1736. doi: 10.1007/s10118-014-1518-6

    24. [24]

      Lynge M. E., van der Westen R., Postma A., Stadler B.. Polydopamine-a nature-inspired polymer coating for biomedical science[J]. Nanoscale, 2011,3(12):4916-4928. doi: 10.1039/c1nr10969c

    25. [25]

      Jiang J. H., Zhu L. P., Li X. L., Xu Y. Y., Zhu B. K.. Surface modification of PE porous membranes based on the strong adhesion of polydopamine and covalent immobilization of heparin[J]. J. Membr. Sci., 2010,364(1-2):194-202. doi: 10.1016/j.memsci.2010.08.017

    26. [26]

      Zhong X., Bai H. J., Xu J. J., Chen H. Y., Zhu Y. H.. A reusable interface constructed by 3-aminophenylboronic acid-functionalized multiwalled carbon nanotubes for cell capture, release, and cytosensing[J]. Adv. Funct. Mater., 2010,20(6):992-999. doi: 10.1002/adfm.200901915

    27. [27]

      Jung Y., Lee J. M., Jung H., Chung B. H.. Self-directed and self-oriented immobilization of antibody by protein G-DNA conjugate[J]. Anal. Chem., 2007,79(17):6534-6541. doi: 10.1021/ac070484i

    28. [28]

      Li D., Chen Y., Liu Z.. Boronate affinity materials for separation and molecular recognition:structure, properties and applications[J]. Chem. Soc. Rev., 2015,44(22):8097-8123. doi: 10.1039/C5CS00013K

  • 加载中
    1. [1]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    2. [2]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    3. [3]

      Fengjie LiuFansu MengZhenjiang YangHuan WangYuehong RenYu CaiXingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335

    4. [4]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    5. [5]

      Gaowa XingYuting ShangXiaorui WangZengnan WuQiang ZhangJiebing AiQiaosheng PuLing Lin . A microfluidic biosensor for multiplex immunoassay of foodborne pathogens agitated by programmed audio signals. Chinese Chemical Letters, 2024, 35(10): 109491-. doi: 10.1016/j.cclet.2024.109491

    6. [6]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    7. [7]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    8. [8]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    9. [9]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    10. [10]

      Xiao-Ya YuanCong-Cong WangBing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517

    11. [11]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    12. [12]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    13. [13]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    14. [14]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    15. [15]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    16. [16]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    17. [17]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    18. [18]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    19. [19]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    20. [20]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

Metrics
  • PDF Downloads(0)
  • Abstract views(680)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return