Citation: Jie Zhao, Ru Mo, Li-Mei Tian, Ling-Jie Song, Shi-Fang Luan, Jing-Hua Yin, Lu-Quan Ren. Oriented Antibody Immobilization and Immunoassay Based on Boronic Acid-containing Polymer Brush[J]. Chinese Journal of Polymer Science, ;2018, 36(4): 472-478. doi: 10.1007/s10118-018-2031-0 shu

Oriented Antibody Immobilization and Immunoassay Based on Boronic Acid-containing Polymer Brush

  • Corresponding author: Jie Zhao, jiezhao@jlu.edu.cn
  • Received Date: 23 August 2017
    Accepted Date: 30 August 2017
    Available Online: 1 December 2017

  • High sensitive immunoassay platforms have gained intense attention due to their vital roles in early-stage disease diagnosis and therapeutic information feedback. Although random covalent-binding of antibody has been widely adopted in immunoassays due to its simplicity and effectiveness, it readily loses its activity and fails to exhibit high antigen-binding capacity. In this work, copolymer of zwitterionic sulfobetaine methacrylate (SBMA) and glycidyl methacrylate (GMA) brushes were immobilized onto inert polypropylene (PP) via surface-initiated atom transfer radical polymerization (ATRP) based on biomimetic dopamine pretreatment. Subsequently, boronic acid (BA) groups were covalently bonded via active GMA units, followed by the introduction of oriented immobilization of antibody. Owing to the oriented immobilization of antibody facilitated by BA groups in polymer brush, the bioactivity of antibody is well preserved, which endows the surface with significantly enhanced antigen-binding capacity. Moreover, the existence of SBMA segments in polymer brushes renders the surface high resistance to nonspecific protein adsorption, significantly alleviating the signal interference of antigen recognition. This strategy could find potential applications in developing high sensitive immunoassay platforms based on the different substrates.
  • 加载中
    1. [1]

      Wu Y. M., Cen Y., Huang L.J., Yu R. Q., Chu X.. Upconversion fluorescence resonance energy transfer biosensor for sensitive detection of human immunodeficiency virus antibodies in human serum[J]. Chem. Commun., 2014,50:4759-4762. doi: 10.1039/C4CC00569D

    2. [2]

      Bi X., Liu Z.. Facile preparation of glycoprotein-imprinted 96-well microplates for enzyme-linked immunosorbent assay by boronate affinity-based oriented surface imprinting[J]. Anal. Chem., 2014,86(1):959-966. doi: 10.1021/ac403736y

    3. [3]

      Gan S. D., Patel K. R.. Enzyme immunoassay and enzyme-linked immunosorbent assay[J]. J. Invest. Dermatol., 2013,133(9):1-3.  

    4. [4]

      Bae Y. M., Oh B. K., Lee W., Lee W. H., Choi J. W.. Study on orientation of immunoglobulin G on protein G layer[J]. Biosens. Bioelectron., 2005,21(1):103-110. doi: 10.1016/j.bios.2004.09.003

    5. [5]

      Bhadra P., Shajahan M. S., Bhattacharya E., Chadha A.. Studies on varying n-alkanethiol chain lengths on a gold coated surface and their effect on antibody-antigen binding efficiency[J]. RSC Adv., 2015,5(98):80480-80487. doi: 10.1039/C5RA11725A

    6. [6]

      Jung Y., Jeong J.Y., Chung B.H.. Recent advances in immobilization methods of antibodies on solid supports[J]. Analyst, 2008,133(6):697-701. doi: 10.1039/b800014j

    7. [7]

      Soellner M. B., Dickson K. A., Nilsson B. L., Raines R.T.. Site-specific protein immobilization by staudinger ligation[J]. J. Am. Chem. Soc., 2003,125(39):11790-11791. doi: 10.1021/ja036712h

    8. [8]

      Trilling A. K., Beekwilder J., Zuilhof H.. Antibody orientation on biosensor surfaces:a minireview[J]. Analyst, 2013,138(6):1619-1627. doi: 10.1039/c2an36787d

    9. [9]

      Wang Z., Jin G. J.. Feasibility of protein A for the oriented immobilization of immunoglobulin on silicon surface for a biosensor with imaging ellipsometry[J]. Biochem. Biophys. Methods, 2003,57(3):203-211. doi: 10.1016/S0165-022X(03)00109-X

    10. [10]

      Kim J., Cho J., Seidler P. M., Kurland N. E., Yadavalli V. K.. Investigations of chemical modifications of amino-terminated organic films on silicon substrates and controlled protein immobilization[J]. Langmuir,, 2010,26(4):2599-2608. doi: 10.1021/la904027p

    11. [11]

      de Juan-Franco E., Caruz A., Pedrajas J. R., Lechuga L. M.. Site-directed antibody immobilization using a protein A-gold binding domain fusion protein for enhanced SPR immunosensing[J]. Analyst, 2013,138(7):2023-2031. doi: 10.1039/c3an36498d

    12. [12]

      Wang S., Ye J., Li X., Liu Z.. Boronate affinity fluorescent nanoparticles for förster resonance energy transfer inhibition assay of cis-diol biomolecules[J]. Anal. Chem., 2016,88(10):5088-5096. doi: 10.1021/acs.analchem.5b04507

    13. [13]

      Peters J. A.. Interactions between boric acid derivatives and saccharides in aqueous media:structures and stabilities of resulting esters[J]. Coord. Chem. Rev., 2014,268(2):1-22.  

    14. [14]

      Brooks W. L., Sumerlin B. S.. Synthesis and applications of boronic acid-containing polymers:from materials to medicine[J]. Chem. Rev., 2016,116(3):1375-1397. doi: 10.1021/acs.chemrev.5b00300

    15. [15]

      Chen M. L., Adak A. K., Yeh N. C.. Fabrication of an oriented Fc-fused lectin microarray through boronate formation[J]. Angew. Chem., 2008,47(45):8627-8630. doi: 10.1002/anie.v47:45

    16. [16]

      Tan L., Xing J., Cao F., Chen L., Zhang C., Shi R., Wang Y.. Synthesis of double-hydrophilic double-grafted copolymers PMA-g-PEG/PDMA and their protein-resistant properties[J]. Chinese J. Polym. Sci., 2013,31(4):691-701. doi: 10.1007/s10118-013-1254-3

    17. [17]

      Luan S., Zhao J., Yang H., Shi H., Jin J., Li X., Liu J., Wang J., Yin J., Stagnaro P.. Surface modification of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via UV-induced graft polymerization of N-vinyl pyrrolidone[J]. J. Colloid Interf. Sci., 2012,93(1):127-134.  

    18. [18]

      Huang C. J., Li Y., Krause J. B., Brault N. D., Jiang S.. Internal architecture of zwitterionic polymer brushes regulates nonfouling properties[J]. Macromol. Rapid Commun., 2012,33:1003-1007. doi: 10.1002/marc.201100858

    19. [19]

      Chien H., Tsai C., Tsai W., Wang M. J., Kuo W. H., Wei T. C., Huang S. T.. Surface conjugation of zwitterionic polymers to inhibit cell adhesion and protein adsorption[J]. J. Colloid Interf. Sci., 2013,107(7):152-159.  

    20. [20]

      Yu Q., Zhang Y., Wang H., Brash J., Chen H.. Anti-fouling bioactive surfaces[J]. Acta Biomater., 2011,7(4):1550-1557. doi: 10.1016/j.actbio.2010.12.021

    21. [21]

      Zong M., Gong Y.. Fabrication and biocompatibility of cell outer membrane mimetic surfaces[J]. Chinese J. Polym. Sci., 2011,29(1):53-64. doi: 10.1007/s10118-010-1019-1

    22. [22]

      Zhao J., Shi Q., Luan S., Song L.. Polypropylene non-woven fabric membrane via surface modification with biomimetic phosphorylcholine in Ce(Ⅳ)/HNO3 redox system[J]. Mater. Sci. Eng. C, 2012,32(7):1785-1789. doi: 10.1016/j.msec.2012.04.057

    23. [23]

      Li Y., Zhou M., Geng C., Chen F., Fu Q.. Simultaneous improvements of thermal stability and mechanical properties of poly(propylene carbonate) via incorporation of environmental-friendly polydopamine[J]. Chinese J. Polym. Sci., 2014,32(12):1724-1736. doi: 10.1007/s10118-014-1518-6

    24. [24]

      Lynge M. E., van der Westen R., Postma A., Stadler B.. Polydopamine-a nature-inspired polymer coating for biomedical science[J]. Nanoscale, 2011,3(12):4916-4928. doi: 10.1039/c1nr10969c

    25. [25]

      Jiang J. H., Zhu L. P., Li X. L., Xu Y. Y., Zhu B. K.. Surface modification of PE porous membranes based on the strong adhesion of polydopamine and covalent immobilization of heparin[J]. J. Membr. Sci., 2010,364(1-2):194-202. doi: 10.1016/j.memsci.2010.08.017

    26. [26]

      Zhong X., Bai H. J., Xu J. J., Chen H. Y., Zhu Y. H.. A reusable interface constructed by 3-aminophenylboronic acid-functionalized multiwalled carbon nanotubes for cell capture, release, and cytosensing[J]. Adv. Funct. Mater., 2010,20(6):992-999. doi: 10.1002/adfm.200901915

    27. [27]

      Jung Y., Lee J. M., Jung H., Chung B. H.. Self-directed and self-oriented immobilization of antibody by protein G-DNA conjugate[J]. Anal. Chem., 2007,79(17):6534-6541. doi: 10.1021/ac070484i

    28. [28]

      Li D., Chen Y., Liu Z.. Boronate affinity materials for separation and molecular recognition:structure, properties and applications[J]. Chem. Soc. Rev., 2015,44(22):8097-8123. doi: 10.1039/C5CS00013K

  • 加载中
    1. [1]

      Yuanzheng WangChen ZhangShuyan HanXiaoli KongChangyun QuanJun WuWei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578

    2. [2]

      Shaobin HeXiaoyun GuoQionghua ZhengHuanran ShenYuan XuFenglin LinJincheng ChenHaohua DengYiming ZengWei Chen . Engineering nickel-supported osmium bimetallic nanozymes with specifically improved peroxidase-like activity for immunoassay. Chinese Chemical Letters, 2025, 36(4): 110096-. doi: 10.1016/j.cclet.2024.110096

    3. [3]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    4. [4]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    5. [5]

      Fengjie LiuFansu MengZhenjiang YangHuan WangYuehong RenYu CaiXingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335

    6. [6]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    7. [7]

      Wenbin ZhouYafei GaoXinyu FengYanqing ZhangCong YangLanxi HeFenghe ZhangXiaoguang LiQing Li . Biomimetic nanoplatform integrates FRET-enhanced photodynamic therapy and chemotherapy for cascaded revitalization of the tumor immune microenvironment in OSCC. Chinese Chemical Letters, 2025, 36(1): 109763-. doi: 10.1016/j.cclet.2024.109763

    8. [8]

      Yingtao ZhongZiwen QiuYanmei LiJiaqi HuangZhenming LuRenjiang KongNi YanHong Cheng . Nutrients deprivation of biomimetic nanozymes for cascade catalysis triggered and oxidative damage induced tumor eradication. Chinese Chemical Letters, 2025, 36(3): 109846-. doi: 10.1016/j.cclet.2024.109846

    9. [9]

      Xixian SunShengke LiRuibing WangLeyong Wang . Functional macrocyclic arenes with active binding sites inside cavity for biomimetic molecular recognition. Chinese Chemical Letters, 2025, 36(4): 110806-. doi: 10.1016/j.cclet.2024.110806

    10. [10]

      Yunyan LiZimin CaiZhicheng WangSifeng ZhuWendian LiuCheng Wang . Construction of biomimetic hybrid nanovesicles based on M1 macrophage-derived exosomes for therapy of cancer. Chinese Chemical Letters, 2025, 36(4): 109942-. doi: 10.1016/j.cclet.2024.109942

    11. [11]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    12. [12]

      Gaowa XingYuting ShangXiaorui WangZengnan WuQiang ZhangJiebing AiQiaosheng PuLing Lin . A microfluidic biosensor for multiplex immunoassay of foodborne pathogens agitated by programmed audio signals. Chinese Chemical Letters, 2024, 35(10): 109491-. doi: 10.1016/j.cclet.2024.109491

    13. [13]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    14. [14]

      Ruixin LiuFeng ShiYanping XiaHaibing ZhuJiawen CaoKai PengChuanli RenJuan LiZhanjun Yang . Universal MOF nanozyme-induced catalytic amplification strategy for label-free electrochemical immunoassay. Chinese Chemical Letters, 2024, 35(11): 109664-. doi: 10.1016/j.cclet.2024.109664

    15. [15]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    16. [16]

      Donghui WuQilin ZhaoJian SunXiurong Yang . Corrigendum to 'Fluorescence immunoassay based on alkaline phosphatase-induced in situ generation of fluorescent non-conjugated polymer dots' [Chin. Chem. Lett. 34 (2023) 107672]. Chinese Chemical Letters, 2024, 35(12): 109881-. doi: 10.1016/j.cclet.2024.109881

    17. [17]

      Chenghao LiuXiaofeng LinJing LiaoMin YangMin JiangYue HuangZhizhi DuLina ChenSanjun FanQitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598

    18. [18]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    19. [19]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    20. [20]

      Xilin BaiWei DengJingjuan WangMing Zhou . Enrichment-enhanced detection strategy in the optimized monitoring system of dopamine with carbon dots-based probe. Chinese Chemical Letters, 2025, 36(2): 109959-. doi: 10.1016/j.cclet.2024.109959

Metrics
  • PDF Downloads(0)
  • Abstract views(823)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return