Citation: Ding Lei, Guan Xu, Qian Ge, Tong Wu, Feng Yang, Xiang Ming. Effect of Fumed SiO2 on Pore Formation Mechanism and Various Performances of β-iPP Microporous Membrane Used for Lithium-ion Battery Separator[J]. Chinese Journal of Polymer Science, ;2018, 36(4): 536-545. doi: 10.1007/s10118-018-2029-7 shu

Effect of Fumed SiO2 on Pore Formation Mechanism and Various Performances of β-iPP Microporous Membrane Used for Lithium-ion Battery Separator

  • Corresponding author: Feng Yang, yangfengscu@126.com
  • Received Date: 17 June 2017
    Accepted Date: 30 August 2017
    Available Online: 7 November 2017

  • In this work, four samples containing different contents of fumed SiO2 were prepared to improve the pore size distribution and various properties of β nucleated isotatic polypropylene (β-iPP) biaxial membrane used for lithium-ion battery separator. The wide-angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC) results show that the fumed SiO2 promotes the formation of β-crystal slightly and narrows down the thickness distribution of β-lamellae; meanwhile, evenly distributed SiO2 within β-iPP can be inspected by scanning electron microscopy (SEM). Moreover, further detailed characterization of morphological evolutions during biaxial stretching by tensile testing and SEM manifests that SiO2 can strengthen β-iPP and make the samples deform more homogeneously, resulting in a gradually elaborate and finer oriented microfibril structure after longitudinal stretching, in which more uniform defects distribute between fibrils and restrain the formation of coarse fibrils effectively. Therefore, more superior microporous structure emerges with the addition of SiO2, accompanied by narrower pore size distribution and better connectivity between microvoids, which is confirmed by mercury porosimeter and diminished Gurley value. Moreover, the lower thermal shrinkage, decreased shrinkage rate and suppressed porosity reduction indicate that fumed SiO2 improves thermal and dimensional stability of membrane dramatically. Furthermore, due to the excellent wettability of SiO2 with electrolyte, the microporous membranes doped with SiO2 have higher electrolyte uptake, even after heat treatment at elevated temperature.
  • 加载中
    1. [1]

      Arora P., Zhang Z. J.. Battery separators[J]. Chem. Rev., 2004,104(10):4419-4462. doi: 10.1021/cr020738u

    2. [2]

      Huang X.. A lithium-ion battery separator prepared using a phase inversion process[J]. J. Power Sources, 2012,216:216-221. doi: 10.1016/j.jpowsour.2012.05.019

    3. [3]

      Jeong H., Hong S. C., Lee S.. Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly(vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries[J]. J. Membr. Sci., 2010,364(1-2):177-182. doi: 10.1016/j.memsci.2010.08.012

    4. [4]

      Jeong H., Kim D., Jeong Y. U., Lee S.. Effect of phase inversion on microporous structure development of Al2O3/poly(vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries[J]. J. Power Sources, 2010,195(18):6116-6121. doi: 10.1016/j.jpowsour.2009.10.085

    5. [5]

      Lalia B. S., Kochkodan V., Hashaikeh R., Hilal N.. A review on membrane fabrication:structure, properties and performance relationship[J]. Desalination, 2013,326:77-95. doi: 10.1016/j.desal.2013.06.016

    6. [6]

      Sohn J., Im J., Shin J., Nho Y. C.. PVDF-HFP/PMMA-coated PE separator for lithium ion battery[J]. J. Solid State Electr., 2012,16(2):551-556. doi: 10.1007/s10008-011-1379-7

    7. [7]

      Song K. W., Kim C. K.. Coating with macroporous polyarylate via a nonsolvent induced phase separation process for enhancement of polyethylene separator thermal stability[J]. J. Membr. Sci., 2010,352(1-2):239-246. doi: 10.1016/j.memsci.2010.02.020

    8. [8]

      Zhang S. S.. A review on the separators of liquid electrolyte Li-ion batteries[J]. J. Power Sources, 2007,164(1):351-364. doi: 10.1016/j.jpowsour.2006.10.065

    9. [9]

      Li J. X., Cheung W. L.. On the deformation mechanisms of β-polypropylene:1[J]. Effect of necking on β-phase PP crystals. Polymer, 1998,39(26):6935-6940.  

    10. [10]

      Li J. X., Cheung W. L., Chan C. M.. On deformation mechanisms of β-polypropylene 2[J]. Changes of lamellar structure caused by tensile load. Polymer, 1999,40(8):2089-2102.  

    11. [11]

      Li J. X., Cheung W. L., Chan C. M.. On deformation mechanisms of β-polypropylene 3[J]. Lamella structures after necking and cold drawing. Polymer, 1999,40(13):3641-3656.  

    12. [12]

      Sadeghi F., Ajji A., Carreau P.. Analysis of microporous membranes obtained from polypropylene films by stretching[J]. J. Membr. Sci., 2007,292(1-2):62-71. doi: 10.1016/j.memsci.2007.01.023

    13. [13]

      Tabatabaei S., Carreau P., Ajji A.. Microporous membranes obtained from polypropylene blend films by stretching[J]. J. Membr. Sci., 2008,325(2):772-782. doi: 10.1016/j.memsci.2008.09.001

    14. [14]

      Ihm D., Noh J., Kim J.. Effect of polymer blending and drawing conditions on properties of polyethylene separator prepared for Li-ion secondary battery[J]. J. Power Sources, 2002,109(2):388-393. doi: 10.1016/S0378-7753(02)00097-6

    15. [15]

      Kim S. S., Lloyd D. R.. Microporous membrane formation via thermally-induced phase separation.Ⅲ. Effect of thermodynamic interactions on the structure of isotactic polypropylene membranes[J]. J. Membr. Sci., 1991,64(1-2):13-29.  

    16. [16]

      Wu T., Xiang M., Cao Y., Kang J., Yang F.. Pore formation mechanism of β nucleated polypropylene stretched membranes[J]. RSC Adv., 2014,4(69):36689-36701. doi: 10.1039/C4RA03589E

    17. [17]

      Wu T., Xiang M., Cao Y., Kang J., Yang F.. Influence of lamellar structure on double yield behavior and pore size distribution in β nucleated polypropylene stretched membranes[J]. RSC Adv., 2014,4(81):43012-43023. doi: 10.1039/C4RA06310D

    18. [18]

      Wu T., Xiang M., Cao Y., Kang J., Yang F.. Influence of lamellar structure on the stress-strain behavior of β nucleated polypropylene under tensile loading at elevated temperatures[J]. RSC Adv., 2015,5(54):43496-43507. doi: 10.1039/C5RA05844A

    19. [19]

      Yang F., Wu T., Xiang M., Cao Y.. Deformation and pore formation mechanism of β nucleated polypropylene with different supermolecular structures[J]. Eur. Polym. J., 2017. doi: 10.1016/j.eurpolymj.2017.03.059

    20. [20]

      Huang X., Hitt J.. Lithium ion battery separators:development and performance characterization of a composite membrane[J]. J. Membr. Sci., 2013,425:163-168.  

    21. [21]

      Jeong H., Kim J. H., Lee S.. A novel poly(vinylidene fluoride-hexafluoropropylene)/poly(ethylene terephthalate) composite nonwoven separator with phase inversion-controlled microporous structure for a lithium-ion battery[J]. J. Mater. Chem., 2010,20(41):9180-9186. doi: 10.1039/c0jm01086c

    22. [22]

      Jeong H., Lee S.. Closely packed SiO2 nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries[J]. J. Power Sources, 2011,196(16):6716-6722. doi: 10.1016/j.jpowsour.2010.11.037

    23. [23]

      Park J., Cho J., Park W., Ryoo D., Yoon S., Kim J., Jeong Y., Lee S.. Close-packed SiO2/poly(methyl methacrylate) binary nanoparticles-coated polyethylene separators for lithium-ion batteries[J]. J. Power Sources, 2010,195(24):8306-8310. doi: 10.1016/j.jpowsour.2010.06.112

    24. [24]

      Liu F., Xiao Q., Wu H. B.. Regenerative polysulfide-scavenging layers enabling lithium-sulfur batteries with high energy density and prolonged cycling life[J]. ACS Nano, 2017,11(3):2697-2705. doi: 10.1021/acsnano.6b07603

    25. [25]

      Choi J., Kim S. H., Kim D.. Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators[J]. J. Power Sources, 2010,195(18):6192-6196. doi: 10.1016/j.jpowsour.2009.11.020

    26. [26]

      Kim K. J., Kim J., Park M., Kwon H. K., Kim H., Kim Y. J.. Enhancement of electrochemical and thermal properties of polyethylene separators coated with polyvinylidene fluoride-hexafluoropropylene co-polymer for Li-ion batteries[J]. J. Power Sources, 2012,198:298-302. doi: 10.1016/j.jpowsour.2011.09.086

    27. [27]

      Kim K. M., Kim J., Ryu K. S.. Characteristics of PVDF-HFP/TiO2 composite electrolytes prepared by a phase inversion technique using dimethyl acetamide solvent and water non-solvent[J]. Macromol. Mater. Eng., 2006,291(12):1495-1502. doi: 10.1002/(ISSN)1439-2054

    28. [28]

      Li Z., Su G., Gao D., Wang X., Li X.. Effect of Al2O3 nanoparticles on the electrochemical characteristics of P(VDF-HFP)-based polymer electrolyte[J]. Electrochim Acta, 2004,49(26):4633-4639. doi: 10.1016/j.electacta.2004.05.018

    29. [29]

      Wachtler M., Ostrovskii D., Jacobsson P., Scrosati B.. A study on PVDF-based SiO2-containing composite gel-type polymer electrolytes for lithium batteries[J]. Electrochim. Acta, 2004,50(2-3):357-361. doi: 10.1016/j.electacta.2004.01.103

    30. [30]

      Shi C., Dai J., Shen X.. A high-temperature stable ceramic-coated separator prepared with polyimide binder/Al2O3 particles for lithium-ion batteries[J]. J. Membr. Sci., 2016,517:91-99. doi: 10.1016/j.memsci.2016.06.035

    31. [31]

      Yu L., Miao J., Jin Y., Lin J.. A comparative study on polypropylene separators coated with different inorganic materials for lithium-ion batteries[J]. Front. Chem. Sci. Eng., 2017. doi: 10.1007/s11705-017-1648-9

    32. [32]

      Takemura D., Aihara S., Hamano K.. A powder particle size effect on ceramic powder based separator for lithium rechargeable battery[J]. J. Power Sources, 2005,146(1-2):779-783. doi: 10.1016/j.jpowsour.2005.03.159

    33. [33]

      Zhang S., Xu K., Jow T.. An inorganic composite membrane as the separator of Li-ion batteries[J]. J. Power Sources, 2005,140(2):361-364. doi: 10.1016/j.jpowsour.2004.07.034

    34. [34]

      Huang X.. Separator technologies for lithium-ion batteries[J]. J. Solid State Electrochem., 2011,15(4):649-662. doi: 10.1007/s10008-010-1264-9

    35. [35]

      Varga J.. β-Modification of isotactic polypropylene:preparation, structure, processing, properties and application[J]. J. Macromol. Sci. B, 2002,41(4):1121-1171. doi: 10.1081/MB-120013089

    36. [36]

      Huo H., Jiang S., An L., Feng J.. Influence of shear on crystallization behavior of the β phase in isotactic polypropylene with β-nucleating agent[J]. Macromolecules, 2004,37(7):2478-2483. doi: 10.1021/ma0358531

    37. [37]

      Luo F., Geng C., Wang K., Deng H., Chen F., Fu Q., Na B.. New understanding in tuning toughness of β-polypropylene:the role of β-nucleated crystalline morphology[J]. Macromolecules, 2009,42(23):9325-9331. doi: 10.1021/ma901651f

    38. [38]

      Wu T., Cao Y., Yang F., Xiang M.. Investigation on double yielding behavior under tensile loading in isotactic polypropylene[J]. Mater. Design, 2014. doi: 10.1016/j.matdes.2014.03.044

    39. [39]

      Lin Y., Meng L., Wu L.. A semi-quantitative deformation model for pore formation in isotactic polypropylene microporous membrane[J]. Polymer., 2015. doi: 10.1016/j.polymer.2015.10.067

    40. [40]

      Aboulfaraj M., G'Sell C., Ulrich B., Dahoun A.. In situ observation of the plastic deformation of polypropylene spherulites under uniaxial tension and simple shear in the scanning electron microscope[J]. Polymer, 1995,36(4):731-742. doi: 10.1016/0032-3861(95)93102-R

    41. [41]

      Bassett D. C., Olley R. H.. On the lamellar morphology of isotactic polypropylene spherulites[J]. Polymer, 1984,25(7):935-943. doi: 10.1016/0032-3861(84)90076-4

    42. [42]

      Olley R. H., Bassett D. C.. On the development of polypropylene spherulites[J]. Polymer, 1989,30(3):399-409. doi: 10.1016/0032-3861(89)90004-9

    43. [43]

      Olley R. H., Hodge A. M., Bassett D. C.. A permanganic etchant for polyolefines[J]. J. Polym. Sci:Polym. Phys. Ed., 1979,17(4):627-643. doi: 10.1002/pol.1979.180170406

    44. [44]

      Ran S., Xu M.. Studies on the pore formation mechanism of β-crystalline polypropylene under stretching[J]. Chinese J. Polym. Sci., 2004,22(2):123-130.  

    45. [45]

      Zhu W., Zhang X., Zhao C., Wu W., Hou J., Xu M.. A Novel polypropylene microporous film[J]. Polym. Adv. Technol., 1996,7(9):743-748. doi: 10.1002/(ISSN)1099-1581

    46. [46]

      Liu S., Zhou C., Yu W.. Phase separation and structure control in ultra-high molecular weight polyethylene microporous membrane[J]. J. Membr. Sci., 2011,379(1-2):268-278. doi: 10.1016/j.memsci.2011.05.073

    47. [47]

      Fu D., Luan B., Argue S., Bureau M., Davidson I.. Nano SiO2 particle formation and deposition on polypropylene separators for lithium-ion batteries[J]. J. Power Sources, 2012. doi: 10.1016/j.jpowsour.2011.10.130

    48. [48]

      Osińska M., Walkowiak M., Zalewska A., Jesionowski T.. Study of the role of ceramic filler in composite gel electrolytes based on microporous polymer membranes[J]. J. Membr. Sci., 2009,326(2):582-588. doi: 10.1016/j.memsci.2008.10.036

    49. [49]

      Bai H., Luo F., Zhou T., Deng H., Wang K., Fu Q.. New insight on the annealing induced microstructural changes and their roles in the toughening of β-form polypropylene[J]. Polymer, 2011,52(10):2351-2360. doi: 10.1016/j.polymer.2011.03.017

    50. [50]

      Bai H., Wang Y., Zhang Z., Han L., Li Y., Liu L., Zhou Z., Men Y.. Influence of annealing on microstructure and mechanical properties of isotactic polypropylene with β-phase nucleating agent[J]. Macromolecules, 2009,42(17):6647-6655. doi: 10.1021/ma9001269

    51. [51]

      Ding L., Wu T., Yang F., Xiang M.. Deformation and pore formation mechanism under tensile loading in isotactic polypropylene[J]. Polym. Int., 2017,66(8):1129-1140. doi: 10.1002/pi.2017.66.issue-8

    52. [52]

      Lin K. Y., Xanthos M., Sirkar K. K.. Novel polypropylene microporous membranes via spherulitic deformation-processing perspectives[J]. Polymer, 2009,50(19):4671-4682. doi: 10.1016/j.polymer.2009.07.014

    53. [53]

      Lin K. Y., Xanthos M., Sirkar K. K.. Novel polypropylene-based microporous membranes via spherulitic deformation[J]. J. Membr. Sci., 2009,330(1-2):267-278. doi: 10.1016/j.memsci.2008.12.060

    54. [54]

      Wu C., Zhang M., Rong M., Friedrich K.. Tensile performance improvement of low nanoparticles filled-polypropylene composites[J]. Compos. Sci. Technol., 2002,62(10-11):1327-1340. doi: 10.1016/S0266-3538(02)00079-9

    55. [55]

      Hwang S., Hsu P. P.. Effects of silica particle size on the structure and properties of polypropylene/silica composites foams[J]. J. Ind. Eng. Chem., 2013,19(4):1377-1383. doi: 10.1016/j.jiec.2012.12.043

    56. [56]

      Zhou T., Ruan W., Mai Y., Rong M., Zhang M.. Performance improvement of nano-silica/polypropylene composites through in-situ cross-linking approach[J]. Compos. Sci. Technol., 2008,68(14):2858-2863. doi: 10.1016/j.compscitech.2007.10.002

    57. [57]

      Dougnac V. N., Alamillo R., Peoples B. C., Quijada R.. Effect of particle diameter on the permeability of polypropylene/SiO2 nanocomposites[J]. Polymer, 2010,51(13):2918-2926. doi: 10.1016/j.polymer.2010.02.014

    58. [58]

      Chen J., Rong M., Ruan W., Zhang M.. Interfacial enhancement of nano-SiO2/polypropylene composites[J]. Compos. Sci. Technol., 2009,69(2):252-259. doi: 10.1016/j.compscitech.2008.10.013

    59. [59]

      Hsu C., Chien L., Kuo P.. High thermal and electrochemical stability of a SiO2 nanoparticle hybird-polyether cross-linked membrane for safety reinforced lithium-ion batteries[J]. RSC Adv., 2016,6(22):18089-18095. doi: 10.1039/C5RA26694G

    60. [60]

      Liu H., Xu J., Guo B., He X.. Preparation and performance of silica/polypropylene composite separator for lithium-ion batteries[J]. J. Mater. Sci., 2014,49(20):6961-6966. doi: 10.1007/s10853-014-8401-2

    61. [61]

      Jia D., Wang L.. Decoration of silica nanoparticles on polypropylene separator for lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2017,9(8):7499-7504. doi: 10.1021/acsami.7b00065

    62. [62]

      Wang Y., Wang S., Fang J., Ding L., Wang H.. A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries[J]. J. Membr. Sci., 2017,537:248-254. doi: 10.1016/j.memsci.2017.05.023

  • 加载中
    1. [1]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    2. [2]

      Zhenzhen Zhao Meichen Jiao Jiejie Ling Han Jiang Yan Gao Hao Xu Hai-Qing Li Jingang Jiang Peng Wu Le Xu . Toward the microporous zeolite family with tunable large-medium cage and pore opening. Chinese Journal of Structural Chemistry, 2024, 43(9): 100336-100336. doi: 10.1016/j.cjsc.2024.100336

    3. [3]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    4. [4]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    5. [5]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

    6. [6]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    7. [7]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    8. [8]

      Ying ZhaoYin-Hang ChaiTian ChenJie ZhengTing-Ting LiFrancisco AznarezLi-Long DangLu-Fang Ma . Size-controlled synthesis and near-infrared photothermal response of Cp* Rh-based metalla[2]catenanes and rectangular metallamacrocycles. Chinese Chemical Letters, 2024, 35(6): 109298-. doi: 10.1016/j.cclet.2023.109298

    9. [9]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    10. [10]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    11. [11]

      Xin ZhangJunyu ChenXiang PeiLinxin YangLiang WangLuona ChenGuangmei YangXibo PeiQianbing WanJian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889

    12. [12]

      Bei Li Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331

    13. [13]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    14. [14]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    15. [15]

      Yixuan WangJiexin LiZhihao ShangChengcheng FengJianmin GuMaosheng YeRan ZhaoDanna LiuJingxin MengShutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623

    16. [16]

      Qinming Wu Xiangju Meng . New zeolites with extra-stable extra-large-pore. Chinese Journal of Structural Chemistry, 2024, 43(6): 100310-100310. doi: 10.1016/j.cjsc.2024.100310

    17. [17]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    18. [18]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    19. [19]

      Lingna WangChenxin TianRuobin DaiZhiwei Wang . Eco-friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(9): 109356-. doi: 10.1016/j.cclet.2023.109356

    20. [20]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

Metrics
  • PDF Downloads(0)
  • Abstract views(686)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return