Citation: Sedra Tul Muntha, Muhammad Siddiq, Ayesha Kausar, Anum Khan. Mixed Matrix Membranes of Polysulfone/Polyimide Reinforced with Modified Zeolite Based Filler: Preparation, Properties and Application[J]. Chinese Journal of Polymer Science, ;2018, 36(1): 65-77. doi: 10.1007/s10118-018-2021-2 shu

Mixed Matrix Membranes of Polysulfone/Polyimide Reinforced with Modified Zeolite Based Filler: Preparation, Properties and Application

  • Corresponding author: Muhammad Siddiq, m_sidiq12@yahoo.com
  • Received Date: 21 July 2017
    Accepted Date: 17 August 2017
    Available Online: 30 October 2017

  • In this work, polysulfone/polyimide (PSf/PI) mixed matrix membranes were fabricated by reinforcement of modified zeolite (MZ) particles through solution casting method for investigation of antibacterial activity against two gram negative bacteria (Salmonella typhi, Klebsella pneumonia) and two gram positive bacteria (Staphylococcus aureus, Bacillus subtilis). The modified zeolite particles were incorporated to PSf and PI matrix and the influence of these particles on thermal, mechanical and structural properties was evaluated. The morphological evolution was investigated through scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis, which revealed good compatibility between organic polymer matrix and inorganic filler. Mechanical stability was investigated by tensile testing while thermal analysis was evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). This revealed improvement in thermal properties with increasing filler concentration from 1 wt% to 10 wt%. Structural analysis was successfully done using X-ray diffraction analysis (XRD) and Fourier transform infrared (FTIR) spectroscopy. Solvent content of fabricated mixed matrix membranes was observed to decrease while moving from more hydrophilic to less hydrophilic solvent. However, addition of filler content enhanced the porosity of fabricated membranes. The synthesized mixed matrix membranes exhibited good antibacterial activity and the highest activity was shown by PSf/PI/MZ mixed matrix membrane. Therefore, the combination effect of PSf, PI and MZ sufficiently enhanced the antibacterial activity of mixed matrix membranes.
  • 加载中
    1. [1]

      Das R., Ghosh S., Naskar M. K.. Synthesis of single crystal zeolite L rods with high aspect ratio using rice husk ash as silica source[J]. Indian J. Chem. A, 2014,53(7):816-819.  

    2. [2]

      Jabłońska M., Król A., Kukulska-Zając E., Tarach K., Girman V., Chmielarz L., Góra-Marek K.. Zeolites Y modified with palladium as effective catalysts for low-temperature methanol incineration[J]. Appl. Catal, B, 2015,166:353-365.  

    3. [3]

      Ren J., Yu D., Feng L., Wang G., Lv G.. Nanocable-structured polymer/carbon nanotube composite with low dielectric loss and high impedance[J]. Compos Part A., Appl Sci Manuf., 2017,98:66-75. doi: 10.1016/j.compositesa.2017.03.014

    4. [4]

      Wang C., Chen L., Li J., Sun S., Ma L., Wu G., Zhao F., Jiang B., Huang Y.. Enhancing the interfacial strength of carbon fiber reinforced epoxy composites by green grafting of poly (oxypropylene) diamines[J]. Compos Part A, Appl Sci Manuf., 2017,99:58-64. doi: 10.1016/j.compositesa.2017.04.003

    5. [5]

      Liu L., Lv F., Zhang Y., Li P., Tong W., Ding L., Zhang G.. Enhanced dielectric performance of polyimide composites with modified sandwich-like SiO2@GO hybrids[J]. Compos Part A, Appl Sci Manuf., 2017,99:41-47. doi: 10.1016/j.compositesa.2017.03.029

    6. [6]

      Seoane B., Coronas J., Gascon I., Benavides M. E., Karvan O., Caro J., Gascon J.. Metal-organic framework based mixed matrix membranes:a solution for highly efficient CO2 capture[J]. Chem. Soc. Rev., 2015,44(8):2421-2454. doi: 10.1039/C4CS00437J

    7. [7]

      Richtera L., Chudobova D., Cihalova K., Kremplova M., Milosavljevic V., Kopel P., Blazkova I., Hynek D., Adam V., Kizek R.. The composites of graphene oxide with metal or semimetal nanoparticles and their effect on pathogenic microorganisms[J]. Materials, 2015,8(6):2994-3011. doi: 10.3390/ma8062994

    8. [8]

      Ghaemy M., Alizadeh R., Behmadi H.. Synthesis of soluble and thermally stable polyimide from new diamine bearing N-[4-(9H-carbazol-9-yl) phenyl] formamide pendent group[J]. Eur. Polym. J., 2009,45(11):3108-3115. doi: 10.1016/j.eurpolymj.2009.08.012

    9. [9]

      Rafiq S., Man Z., Maitra S., Maulud A., Ahmad F., Muhammad N.. Preparation of asymmetric polysulfone/polyimide blended membranes for CO2 separation[J]. Korean J. Chem. Eng., 2011,28(10):2050-2056. doi: 10.1007/s11814-011-0053-1

    10. [10]

      Dorosti F., Omidkhah M. R., Pedram M. Z., Moghadam F.. Fabrication and characterization of polysulfone/polyimidezeolite mixed matrix membrane for gas separation[J]. Chem. Eng. J., 2011,171(3):1469-1476. doi: 10.1016/j.cej.2011.05.081

    11. [11]

      Rezakazemi M., Amooghin A. E., Montazer-Rahmati M. M., Ismail A. F., Matsuura T.. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs):an overview on current status and future directions[J]. Prog. Polym. Sci., 2014,39(5):817-861. doi: 10.1016/j.progpolymsci.2014.01.003

    12. [12]

      Yuan H., Liu X., Ma L., Yang Z., Wang H., Wang J., Yang S.. Application of two-dimensional MoS2 nanosheets in the property improvement of polyimide matrix:mechanical and thermal aspects[J]. Compos Part A, Appl Sci Manuf., 2017,95:220-228. doi: 10.1016/j.compositesa.2017.01.018

    13. [13]

      Lateef A., Nazir R., Jamil N., Alam S., Shah R., Khan M. N, Saleem M.. Synthesis and characterization of zeolite based nano-composite:an environment friendly slow release fertilizer. Micropo[J]. Micropor. Mesopor. Mat., 2016,232:174-183. doi: 10.1016/j.micromeso.2016.06.020

    14. [14]

      van-Oers C. J., Góra-Marek K., Sadowska K., Mertens M., Meynen V., Datka J., Cool P.. In situ IR spectroscopic study to reveal the impact of the synthesis conditions of zeolite β nanoparticles on the acidic properties of the resulting zeolite[J]. Chem. Eng. J., 2014,237:372-379. doi: 10.1016/j.cej.2013.10.041

    15. [15]

      Góra-Marek K., Brylewska K., Tarach K.A., Rutkowska M., Jabłońska M., Choi M., Chmielarz L.. IR studies of Fe modified ZSM-5 zeolites of diverse mesopore topologies in the terms of their catalytic performance in NH3-SCR and NH3-SCO processes[J]. Appl. Catal., B Environ., 2015,179:589-598. doi: 10.1016/j.apcatb.2015.05.053

    16. [16]

      Moreno-González M., Blasco T., Góra-Marek K., Palomares A. E., Corma A.. Study of propane oxidation on Cu-zeolite catalysts by in-situ EPR and IR spectroscopies[J]. Catal Today., 2014,227:123-129. doi: 10.1016/j.cattod.2013.10.055

    17. [17]

      Marambio-Jones C., Hoek E. M.. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment[J]. J. Nanopart. Res., 2010,12(5):1531-1551. doi: 10.1007/s11051-010-9900-y

    18. [18]

      Amooghin A. E., Omidkhah M., Kargari A.. The effects of aminosilane grafting on NaY zeolite-Matrimid® 5218 mixed matrix membranes for CO2/CH4 separation[J]. J. Member. Sci., 2015,490:364-379. doi: 10.1016/j.memsci.2015.04.070

    19. [19]

      Fathizadeh M., Aroujalian A., Raisi A.. Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process[J]. J. Member. Sci., 2011,375(1):88-95.  

    20. [20]

      Rezakazemi M., Shahidi K., Mohammadi T.. Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes[J]. Int. J. Hydrogen Energy, 2012,37(19):14576-14589. doi: 10.1016/j.ijhydene.2012.06.104

    21. [21]

      Nik O. G., Chen X. Y., Kaliaguine S.. Amine-functionalized zeolite FAU/EMT-polyimide mixed matrix membranes for CO2/CH4 separation[J]. J. Member. Sci., 2011,379(1):468-478.  

    22. [22]

      Taurozzi J. S., Arul H., Bosak V. Z., Burban A. F., Voice T. C., Bruening M. L., Tarabara V. V.. Effect of filler incorporation route on the properties of polysulfone-silver nanocomposite membranes of different porosities[J]. J. Member. Sci., 2008,325(1):58-68. doi: 10.1016/j.memsci.2008.07.010

    23. [23]

      Liu S., Zeng T. H., Hofmann M., Burcombe E., Wei J., Jiang R., Chen Y.. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide:membrane and oxidative stress[J]. ACS Nano, 2011,5(9):6971-6980. doi: 10.1021/nn202451x

    24. [24]

      Kausar A., Zulfiqar S., Ahmad Z., Sarwar M. I.. Facile synthesis and properties of a new generation of soluble and thermally stable polyimides[J]. Polym. Degrad. Stab., 2010,95(12):2603-2610. doi: 10.1016/j.polymdegradstab.2010.07.025

    25. [25]

      Biçen M., Kayaman-Apohan N., Karataş S., Dumludağ F., Güngör A.. The effect of surface modification of zeolite 4A on the physical and electrical properties of copolyimide hybrid films[J]. Micropor Mesopor Mat., 2015,218:79-87. doi: 10.1016/j.micromeso.2015.06.034

    26. [26]

      Ahmad N. N., Leo C. P., Mohammad A. W., Ahmad A. L.. Modification of gas selective SAPO zeolites using imidazolium ionic liquid to develop polysulfone mixed matrix membrane for CO2 gas separation[J]. Micropor Mesopor Mater., 2017,244:21-30. doi: 10.1016/j.micromeso.2016.10.001

    27. [27]

      Ding Y., Bikson B.. Macro and meso porous polymeric materials from miscible polysulfone/polyimide blends by chemical decomposition of polyimides[J]. Polymer, 2010,51(1):46-52. doi: 10.1016/j.polymer.2009.11.043

    28. [28]

      Junaidi M. U., Leo C. P., Ahmad A. L., Kamal S. N., Chew T. L.. Carbon dioxide separation using asymmetric polysulfone mixed matrix membranes incorporated with SAPO-34 zeolite[J]. Fuel Process Technol., 2014,118:125-132. doi: 10.1016/j.fuproc.2013.08.009

    29. [29]

      Leyva-Ramos R., Jacobo-Azuara A., Diaz-Flores P. E., GuerreroCoronado R. M., Mendoza-Barron J., Berber-Mendoza M. S.. Adsorption of chromium (Ⅵ) from an aqueous solution on a surfactant-modified zeolite[J]. Colloid Surf. A Physicochem. Eng. Asp., 2008,330(1):35-41. doi: 10.1016/j.colsurfa.2008.07.025

    30. [30]

      Jabłońska M., Król A., Kukulska-Zając E., Tarach K., Girman V., Chmielarz L., Góra-Marek K.. Zeolites Y modified with palladium as effective catalysts for low-temperature methanol incineration[J]. Appl. Catal., B, 2015,166:353-365.  

    31. [31]

      Jiménez-Cedillo M. J., Olguín M. T., Fall C., Colín A.. Adsorption capacity of iron-or iron-manganese-modified zeolite-rich tuffs for As(Ⅲ) and As(Ⅴ) water pollutants[J]. Appl. Clay Sci., 2011,54(3):206-216.  

    32. [32]

      Kausar A.. Nanocomposite membranes of poly (ethylene glycol) diamine cured DGEBA/poly (vinylidene fluoride) reinforced with poly (methyl methacrylate) coated gold nanoparticles[J]. Int. J. Plast. Technol,, 2015,19(1):106-123. doi: 10.1007/s12588-015-9107-2

    33. [33]

      Jomekian A., Pakizeh M., Shafiee A. R., Mansoori S. A.. Fabrication or preparation and characterization of new modified MCM-41/PSf nanocomposite membrane coated by PDMS[J]. Sep. Purif. Technol., 2011,80(3):556-565. doi: 10.1016/j.seppur.2011.06.011

    34. [34]

      Kubica P., Wolinska-Grabczyk A., Grabiec E., Libera M., Wojtyniak M., Czajkowska S., Domański M.. Gas transport through mixed matrix membranes composed of polysulfone and copper terephthalate particles[J]. Micropor. Mesopor. Mat., 2016,235:120-134. doi: 10.1016/j.micromeso.2016.07.037

    35. [35]

      Shirzadi H., Nezamzadeh-Ejhieh A.. An efficient modified zeolite for simultaneous removal of Pb(Ⅱ) and Hg(Ⅱ) from aqueous solution[J]. J. Mol. Liq., 2017,230:221-229. doi: 10.1016/j.molliq.2017.01.029

    36. [36]

      Kausar A.. Novel water purification membranes of polystyrene/multi-walled carbon nanotube-grafted-graphene oxide hybrids[J]. Am. J. Polym. Sci., 2014,4(3):63-72.  

    37. [37]

      Mollahosseini A., Rahimpour A., Jahamshahi M., Peyravi M., Khavarpour M.. The effect of silver nanoparticle size on performance and antibacteriality of polysulfone ultrafiltration membrane[J]. Desalination, 2012,306:41-50. doi: 10.1016/j.desal.2012.08.035

  • 加载中
    1. [1]

      Xingyu ChenSihui ZhuangWeiyao YanZhengli ZengJianguo FengHongen CaoLei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635

    2. [2]

      Yanye FanJingjing ChenBichun ChenJinyu BaiBowen YangFeng LiangLijing Fang . Design, synthesis and biological evaluation of Leu10-teixobactin analogues. Chinese Chemical Letters, 2025, 36(4): 110075-. doi: 10.1016/j.cclet.2024.110075

    3. [3]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    4. [4]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    5. [5]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    6. [6]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    7. [7]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    8. [8]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

    9. [9]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    10. [10]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    11. [11]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    12. [12]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    13. [13]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

    14. [14]

      Lingna WangChenxin TianRuobin DaiZhiwei Wang . Eco-friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(9): 109356-. doi: 10.1016/j.cclet.2023.109356

    15. [15]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    16. [16]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    17. [17]

      Yuanzheng WangChen ZhangShuyan HanXiaoli KongChangyun QuanJun WuWei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578

    18. [18]

      Jiaqi LinPupu YangYimin JiangShiqian DuDongcai ZhangGen HuangJinbo WangJun WangQie LiuMiaoyu LiYujie WuPeng LongYangyang ZhouLi TaoShuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435

    19. [19]

      Lingjun ShaBing BoJiayu LiQi LiuYa CaoJing Zhao . Precise assessment of lung cancer-derived exosomes based on dual-labelled membrane interface. Chinese Chemical Letters, 2025, 36(4): 110109-. doi: 10.1016/j.cclet.2024.110109

    20. [20]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

Metrics
  • PDF Downloads(0)
  • Abstract views(845)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return