Citation: Wen-Kai Liu, Yun Zhao, Rong Wang, Feng Luo, Jian-Shu Li, Jie-Hua Li, Hong Tan. Effect of Chain Extender on Hydrogen Bond and Microphase Structure of Biodegradable Thermoplastic Polyurethanes[J]. Chinese Journal of Polymer Science, ;2018, 36(4): 514-520. doi: 10.1007/s10118-018-2020-3 shu

Effect of Chain Extender on Hydrogen Bond and Microphase Structure of Biodegradable Thermoplastic Polyurethanes

  • Thermomechanical properties of polyurethanes (PUs) strongly depend on the molecular interactions and microphase structure. In this work, two chain extenders with different ratios, flexile 1, 4-butanediol (BDO) and branched trimethylolpropane mono allyl ether (TMPAE), are used to tune the molecular interactions and microphase structures of a series of biodegradable thermoplastic polyurethanes (TPUs). In TPUs, the biodegradable polycaprolactone (PCL, Mn of 2000) is used as soft segment while 1, 6-diisocyanatohexane (HDI) and chain extenders are used as hard segment. Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscppy (1H-NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and mechanical tests were performed to characterize the bulk structure and properties of TPUs. Compared with BDO, the steric bulk of TMPAE is larger. The increment of TMPAE can help to increase the hydrogen bond content, microphase separation, and the elastic modulus ratio (R), which would strongly affect the thermomechanical property of the TPUs. The results of this work verify the importance of the structure of chain extender on the properties of TPUs. It provides valuable information for further understanding the structure-property relationships of these polyurethanes.
  • 加载中
    1. [1]

      Cherng J. Y., Hou T. Y., Shih M. F., Talsma H., Hennink W. E.. Polyurethane-based drug delivery systems[J]. Int. J. Pharm., 2013,450(1):145-162.  

    2. [2]

      Zdrahala R. J., Zdrahala I. J.. Biomedical applications of polyurethanes:a review of past promises, present realities, and a vibrant future[J]. J. Biomater. Appl., 1999,14(1):67-90. doi: 10.1177/088532829901400104

    3. [3]

      Guelcher S. A.. Biodegradable polyurethanes:synthesis and applications in regenerative medicine[J]. Tissue Eng., Part B:Reviews, 2008,14(1):3-17. doi: 10.1089/teb.2007.0133

    4. [4]

      Guan J., Fujimoto K. L., Sacks M. S., Wagner W. R.. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications[J]. Biomaterials, 2005,26(18):3961-3971. doi: 10.1016/j.biomaterials.2004.10.018

    5. [5]

      Song N. J., Jiang X., Li J. H., Pang Y., Li J. S., Tan H., Fu Q.. The degradation and biocompatibility of waterborne biodegradable polyurethanes for tissue engineering[J]. Chinese J. Polym. Sci., 2013,31(10):1451-1462. doi: 10.1007/s10118-013-1315-7

    6. [6]

      Ding M. M., Song N. J., He X. L., Li J. H., Zhou L. J., Tan H., Fu Q., Gu Q.. Toward the next-generation nanomedicines:design of multifunctional multiblock polyurethanes for effective cancer treatment[J]. ACS Nano, 2013,7(3):1918-1928. doi: 10.1021/nn4002769

    7. [7]

      Eceiza A., Martin M., de la Caba K., Kortaberria G., Gabilondo N., Corcuera M., Mondragon I.. Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure:mechanical and thermal properties[J]. Polym. Eng. Sci., 2008,48(2):297-306. doi: 10.1002/(ISSN)1548-2634

    8. [8]

      Spontak R. J., Patel N. P.. Thermoplastic elastomers:fundamentals and applications[J]. Curr. Opin. Colloid Interface Sci., 2000,5(5):333-340.  

    9. [9]

      Wang W. S., Ping P., Yu H. J., Chen X. S., Jing X. B.. Synthesis and characterization of a novel biodegradable, thermoplastic polyurethane elastomer[J]. J. Polym. Sci., Part A:Polym. Chem., 2010,44(19):5505-5512.  

    10. [10]

      Huang W., Yang B., Zhao Y., Di ng, Z; Huang W. M., Yang B., Zhao Y.. Thermo-moisture responsive polyurethane shape-memory polymer and composites:a review.[J]. J. Mater. Chem., 2010,20(17):3367-3381. doi: 10.1039/b922943d

    11. [11]

      Lai S. M., Lan Y. C.. Shape memory properties of melt-blended polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends[J]. J. Polym. Res., 2013,20(5):140-147. doi: 10.1007/s10965-013-0140-6

    12. [12]

      Cui B., Wu Q. Y., Shen L., Yu H. B.. High performance bio-based polyurethane elastomers:effect of different soft and hard segments[J]. Chinese J. Polym. Sci., 2016,34(7):901-909. doi: 10.1007/s10118-016-1811-7

    13. [13]

      Guelcher S. A., Srinivasan A., Dumas J. E., Didier J. E., McBride S., Hollinger , J. O.. Synthesis, mechanical properties, biocompatibility, and biodegradation of polyurethane networks from lysine polyisocyanates.[J]. Biomaterials, 2008,29(12):1762-1775. doi: 10.1016/j.biomaterials.2007.12.046

    14. [14]

      Lee B. S., Chun B. C., Chung Y. C., Sul K. I., Cho J. W.. Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect[J]. Macromolecules, 2001,34(18):6431-6437. doi: 10.1021/ma001842l

    15. [15]

      Yang B., Huang W. M., Li C., Li L.. Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer[J]. Polymer, 2006,47(4):1348-1356. doi: 10.1016/j.polymer.2005.12.051

    16. [16]

      Huang W. M., Yang B., An L., Li C., Chan Y.. Water-driven programmable polyurethane shape memory polymer:demonstration and mechanism[J]. Appl. Phys. Lett., 2005,86(11)114105. doi: 10.1063/1.1880448

    17. [17]

      Altıntaş Z., Çakmakçı , E.; Kahraman M. V., Kayaman-Apohan N.. Thioether functional chain extender for thermoplastic polyurethanes[J]. Chinese J. Polym. Sci., 2015,33(6):850-856. doi: 10.1007/s10118-015-1636-9

    18. [18]

      Ping P., Wang W. S., Chen X. S., Jing X. B.. Poly(ε-caprolactone) polyurethane and its shape-memory property[J]. Biomacromolecules, 2005,6(2):587-592. doi: 10.1021/bm049477j

    19. [19]

      Zhou L. J., Yu L. Q., Ding M. M., Li J. S., Tan H., Wang Z. G., Fu Q.. Synthesis and characterization of pH-sensitive biodegradable polyurethane for potential drug delivery applications[J]. Macromolecules, 2011,44(4):857-864. doi: 10.1021/ma102346a

    20. [20]

      Rabani G., Luftmann H., Kraft A.. Synthesis and characterization of two shape-memory polymers containing short aramid hard segments and poly(ε-caprolactone) soft segments[J]. Polymer, 2006,47(12):4251-4260. doi: 10.1016/j.polymer.2006.03.106

    21. [21]

      Li F., Zhang X., Hou J., Xu M., Luo X., Ma D., Kim B. K.. Studies on thermally stimulated shape memory effect of segmented polyurethanes[J]. J. Appl. Polym. Sci., 1997,64(8):1511-1516. doi: 10.1002/(ISSN)1097-4628

    22. [22]

      Kim B. K., Lee S. Y., Xu M.. Polyurethanes having shape memory effects[J]. Polymer, 1996,37(26):5781-5793. doi: 10.1016/S0032-3861(96)00442-9

    23. [23]

      Bogdanov B., Toncheva V., Schacht E., Finelli L., Sarti B., Scandola M.. Physical properties of poly(ester-urethanes) prepared from different molar mass polycaprolactone-diols[J]. Polymer, 1999,40(11):3171-3182. doi: 10.1016/S0032-3861(98)00552-7

    24. [24]

      Chen C. P., Dai S. A., Chang H. L., Su W. C., Wu T. M., Jeng R. J.. Polyurethane elastomers through multi-hydrogen-bonded association of dendritic structures[J]. Polymer, 2005,46(25):11849-11857. doi: 10.1016/j.polymer.2005.06.127

    25. [25]

      Jiang X., Li J. H., Ding M. M., Tan H., Ling Q. Y., Zhong Y. P., Fu Q.. Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly(ε-caprolactone) and poly(ethylene glycol) as soft segment[J]. Eur. Polym. J., 2007,43(5):1838-1846. doi: 10.1016/j.eurpolymj.2007.02.029

    26. [26]

      Seymour R., Estes G., Cooper S.. Infrared studies of segmented polyurethan elastomers[J]. I. Hydrogen bonding. Macromolecules, 1970,3(5):579-583.  

    27. [27]

      Su T., Wang G. Y., Xu D. X., Hu C. P.. Preparation and properties of waterborne poly-urethaneurea consisting of fluorinated siloxane units[J]. J. Polym. Sci., Part A:Polym. Chem., 2006,44(10):3365-3373. doi: 10.1002/(ISSN)1099-0518

  • 加载中
    1. [1]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    2. [2]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    3. [3]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    4. [4]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    5. [5]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    6. [6]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    7. [7]

      Yifei ZhangYuncong XueLaiwei GaoRui LiaoFeng WangFei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217

    8. [8]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    9. [9]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    10. [10]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    11. [11]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    12. [12]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    13. [13]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    14. [14]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    15. [15]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    16. [16]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    17. [17]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    18. [18]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    19. [19]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    20. [20]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

Metrics
  • PDF Downloads(0)
  • Abstract views(783)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return