Effect of Chain Extender on Hydrogen Bond and Microphase Structure of Biodegradable Thermoplastic Polyurethanes
- Corresponding author: Jie-Hua Li, jiehua_li@scu.edu.cn Hong Tan, hongtan@scu.edu.cn
Citation:
Wen-Kai Liu, Yun Zhao, Rong Wang, Feng Luo, Jian-Shu Li, Jie-Hua Li, Hong Tan. Effect of Chain Extender on Hydrogen Bond and Microphase Structure of Biodegradable Thermoplastic Polyurethanes[J]. Chinese Journal of Polymer Science,
;2018, 36(4): 514-520.
doi:
10.1007/s10118-018-2020-3
Cherng J. Y., Hou T. Y., Shih M. F., Talsma H., Hennink W. E.. Polyurethane-based drug delivery systems[J]. Int. J. Pharm., 2013,450(1):145-162.
Zdrahala R. J., Zdrahala I. J.. Biomedical applications of polyurethanes:a review of past promises, present realities, and a vibrant future[J]. J. Biomater. Appl., 1999,14(1):67-90. doi: 10.1177/088532829901400104
Guelcher S. A.. Biodegradable polyurethanes:synthesis and applications in regenerative medicine[J]. Tissue Eng., Part B:Reviews, 2008,14(1):3-17. doi: 10.1089/teb.2007.0133
Guan J., Fujimoto K. L., Sacks M. S., Wagner W. R.. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications[J]. Biomaterials, 2005,26(18):3961-3971. doi: 10.1016/j.biomaterials.2004.10.018
Song N. J., Jiang X., Li J. H., Pang Y., Li J. S., Tan H., Fu Q.. The degradation and biocompatibility of waterborne biodegradable polyurethanes for tissue engineering[J]. Chinese J. Polym. Sci., 2013,31(10):1451-1462. doi: 10.1007/s10118-013-1315-7
Ding M. M., Song N. J., He X. L., Li J. H., Zhou L. J., Tan H., Fu Q., Gu Q.. Toward the next-generation nanomedicines:design of multifunctional multiblock polyurethanes for effective cancer treatment[J]. ACS Nano, 2013,7(3):1918-1928. doi: 10.1021/nn4002769
Eceiza A., Martin M., de la Caba K., Kortaberria G., Gabilondo N., Corcuera M., Mondragon I.. Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure:mechanical and thermal properties[J]. Polym. Eng. Sci., 2008,48(2):297-306. doi: 10.1002/(ISSN)1548-2634
Spontak R. J., Patel N. P.. Thermoplastic elastomers:fundamentals and applications[J]. Curr. Opin. Colloid Interface Sci., 2000,5(5):333-340.
Wang W. S., Ping P., Yu H. J., Chen X. S., Jing X. B.. Synthesis and characterization of a novel biodegradable, thermoplastic polyurethane elastomer[J]. J. Polym. Sci., Part A:Polym. Chem., 2010,44(19):5505-5512.
Huang W., Yang B., Zhao Y., Di ng, Z; Huang W. M., Yang B., Zhao Y.. Thermo-moisture responsive polyurethane shape-memory polymer and composites:a review.[J]. J. Mater. Chem., 2010,20(17):3367-3381. doi: 10.1039/b922943d
Lai S. M., Lan Y. C.. Shape memory properties of melt-blended polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends[J]. J. Polym. Res., 2013,20(5):140-147. doi: 10.1007/s10965-013-0140-6
Cui B., Wu Q. Y., Shen L., Yu H. B.. High performance bio-based polyurethane elastomers:effect of different soft and hard segments[J]. Chinese J. Polym. Sci., 2016,34(7):901-909. doi: 10.1007/s10118-016-1811-7
Guelcher S. A., Srinivasan A., Dumas J. E., Didier J. E., McBride S., Hollinger , J. O.. Synthesis, mechanical properties, biocompatibility, and biodegradation of polyurethane networks from lysine polyisocyanates.[J]. Biomaterials, 2008,29(12):1762-1775. doi: 10.1016/j.biomaterials.2007.12.046
Lee B. S., Chun B. C., Chung Y. C., Sul K. I., Cho J. W.. Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect[J]. Macromolecules, 2001,34(18):6431-6437. doi: 10.1021/ma001842l
Yang B., Huang W. M., Li C., Li L.. Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer[J]. Polymer, 2006,47(4):1348-1356. doi: 10.1016/j.polymer.2005.12.051
Huang W. M., Yang B., An L., Li C., Chan Y.. Water-driven programmable polyurethane shape memory polymer:demonstration and mechanism[J]. Appl. Phys. Lett., 2005,86(11)114105. doi: 10.1063/1.1880448
Altıntaş Z., Çakmakçı , E.; Kahraman M. V., Kayaman-Apohan N.. Thioether functional chain extender for thermoplastic polyurethanes[J]. Chinese J. Polym. Sci., 2015,33(6):850-856. doi: 10.1007/s10118-015-1636-9
Ping P., Wang W. S., Chen X. S., Jing X. B.. Poly(ε-caprolactone) polyurethane and its shape-memory property[J]. Biomacromolecules, 2005,6(2):587-592. doi: 10.1021/bm049477j
Zhou L. J., Yu L. Q., Ding M. M., Li J. S., Tan H., Wang Z. G., Fu Q.. Synthesis and characterization of pH-sensitive biodegradable polyurethane for potential drug delivery applications[J]. Macromolecules, 2011,44(4):857-864. doi: 10.1021/ma102346a
Rabani G., Luftmann H., Kraft A.. Synthesis and characterization of two shape-memory polymers containing short aramid hard segments and poly(ε-caprolactone) soft segments[J]. Polymer, 2006,47(12):4251-4260. doi: 10.1016/j.polymer.2006.03.106
Li F., Zhang X., Hou J., Xu M., Luo X., Ma D., Kim B. K.. Studies on thermally stimulated shape memory effect of segmented polyurethanes[J]. J. Appl. Polym. Sci., 1997,64(8):1511-1516. doi: 10.1002/(ISSN)1097-4628
Kim B. K., Lee S. Y., Xu M.. Polyurethanes having shape memory effects[J]. Polymer, 1996,37(26):5781-5793. doi: 10.1016/S0032-3861(96)00442-9
Bogdanov B., Toncheva V., Schacht E., Finelli L., Sarti B., Scandola M.. Physical properties of poly(ester-urethanes) prepared from different molar mass polycaprolactone-diols[J]. Polymer, 1999,40(11):3171-3182. doi: 10.1016/S0032-3861(98)00552-7
Chen C. P., Dai S. A., Chang H. L., Su W. C., Wu T. M., Jeng R. J.. Polyurethane elastomers through multi-hydrogen-bonded association of dendritic structures[J]. Polymer, 2005,46(25):11849-11857. doi: 10.1016/j.polymer.2005.06.127
Jiang X., Li J. H., Ding M. M., Tan H., Ling Q. Y., Zhong Y. P., Fu Q.. Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly(ε-caprolactone) and poly(ethylene glycol) as soft segment[J]. Eur. Polym. J., 2007,43(5):1838-1846. doi: 10.1016/j.eurpolymj.2007.02.029
Seymour R., Estes G., Cooper S.. Infrared studies of segmented polyurethan elastomers[J]. I. Hydrogen bonding. Macromolecules, 1970,3(5):579-583.
Su T., Wang G. Y., Xu D. X., Hu C. P.. Preparation and properties of waterborne poly-urethaneurea consisting of fluorinated siloxane units[J]. J. Polym. Sci., Part A:Polym. Chem., 2006,44(10):3365-3373. doi: 10.1002/(ISSN)1099-0518
Xinyu Liu , Jialin Yang , Zonglin He , Jiaoyan Ai , Lina Song , Baohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236
Fangzhou Wang , Wentong Gao , Chenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
Qihang Wu , Hui Wen , Wenhai Lin , Tingting Sun , Zhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692
Huiju Cao , Lei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466
Yang Qin , Jiangtian Li , Xuehao Zhang , Kaixuan Wan , Heao Zhang , Feiyang Huang , Limei Wang , Hongxun Wang , Longjie Li , Xianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826
Yifei Zhang , Yuncong Xue , Laiwei Gao , Rui Liao , Feng Wang , Fei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217
Haoran Shi , Jiaxin Wang , Yuqin Zhu , Hongyang Li , Guodong Ju , Lanlan Zhang , Chao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
Yunkang Tong , Haiqiao Huang , Haolan Li , Mingle Li , Wen Sun , Jianjun Du , Jiangli Fan , Lei Wang , Bin Liu , Xiaoqiang Chen , Xiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663
Junmeng Luo , Qiongqiong Wan , Suming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836
Qiongqiong Wan , Yanan Xiao , Guifang Feng , Xin Dong , Wenjing Nie , Ming Gao , Qingtao Meng , Suming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775
Yi Luo , Lin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648
Guoju Guo , Xufeng Li , Jie Ma , Yongjia Shi , Jian Lv , Daoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024
Jian Han , Li-Li Zeng , Qin-Yu Fei , Yan-Xiang Ge , Rong-Hui Huang , Fen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
Hong Yin , Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382
Peng Wang , Jianjun Wang , Ni Song , Xin Zhou , Ming Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Zhipeng Wan , Hao Xu , Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298