Citation: Zhao-Yang Wei, Nan-Ying Ning, Ming Tian, Li-Qun Zhang, Jian-Guo Mi. Theoretical Interpretation of Conformation Variations of Polydimethylsiloxane Induced by Nanoparticles[J]. Chinese Journal of Polymer Science, ;2018, 36(4): 505-513. doi: 10.1007/s10118-018-2019-9 shu

Theoretical Interpretation of Conformation Variations of Polydimethylsiloxane Induced by Nanoparticles

  • There has been controversy as to whether the addition of nanoparticles to a polymer melt causes perturbed chain structure of polymers. In this work, the chain conformations of polydimethylsiloxane (PDMS) with addition of polyhedral oligomeric silsesquioxane (POSS) nanoparticles have been studied using a classical density functional approach. Under the strong interactions of POSS-PDMS, the radius of gyration of PDMS in the nanocomposites can either increase or decline depending on particle loading. After adding nanoparticles with larger size or weaker interactions, both the increasing and the declining amplitudes can be largely suppressed. The results provide a deep understanding of chain conformation in polymer nanocomposites.
  • 加载中
    1. [1]

      Paul D. R., Robeson L. M.. Polymer nanotechnology:Nanocomposites[J]. Polymer, 2008,49(15):3187-3204. doi: 10.1016/j.polymer.2008.04.017

    2. [2]

      Ganesan V.. Some issues in polymer nanocomposites:theoretical and modeling opportunities for polymer physics[J]. J. Polym. Sci., Part B:Polym. Phys., 2008,46(24):2666-2671. doi: 10.1002/polb.v46:24

    3. [3]

      Pandey Y. N., Papakonstantopoulos G. J., Doxastakis M.. Polymer/nanoparticle interactions:bridging the gap[J]. Macromolecules, 2013,46(13):5097-5106. doi: 10.1021/ma400444w

    4. [4]

      Kumar S. K., Krishnamoorti R.. Nanocomposites:structure, phase behavior, and properties[J]. Annu. Rev. Chem. Biomol. Eng., 2010,1:37-58. doi: 10.1146/annurev-chembioeng-073009-100856

    5. [5]

      Allegra G., Raos G., Vacatello M.. Theories and simulations of polymer-based nanocomposites:from chain statistics to reinforcement[J]. Prog. Polym. Sci., 2008,33(7):683-731. doi: 10.1016/j.progpolymsci.2008.02.003

    6. [6]

      Genix A. C., Oberdisse J.. Structure and dynamics of polymer nanocomposites studied by X-ray and neutron scattering techniques[J]. Curr. Opin. Colloid Interface Sci., 2015,20(4):293-303. doi: 10.1016/j.cocis.2015.10.002

    7. [7]

      Nakatani A., Chen W., Schmidt R., Gordon G., Han C. C.. Chain dimensions in polysilicate-filled poly(dimethyl siloxane)[J]. Polymer, 2001,42(8):3713-3722. doi: 10.1016/S0032-3861(00)00771-0

    8. [8]

      Mackay M. E., Tuteja A., Duxbury P. M., Hawker C. J., van Horn B., Guan Z., Chen G., Krishnan R. S.. General strategies for nanoparticle dispersion[J]. Science, 2006,311(5768):1740-1743. doi: 10.1126/science.1122225

    9. [9]

      Tuteja A., Duxbury P. M., Mackay M. E.. Polymer chain swelling induced by dispersed nanoparticles[J]. Phys. Rev. Lett., 2008,100(7)077801. doi: 10.1103/PhysRevLett.100.077801

    10. [10]

      Tung W. S., Bird V., Composto R. J., Clarke N., Winey K. I.. Polymer chain conformations in CNT/PS nanocomposites from small angle neutron scattering[J]. Macromolecules, 2013,46(13):5345-5354. doi: 10.1021/ma400765v

    11. [11]

      Tung W. S., Composto R. J., Clarke N., Winey K. I.. Anisotropic polymer conformations in aligned SWCNT/PS nanocomposites[J]. ACS Macro Lett., 2015,4(9):916-920. doi: 10.1021/acsmacrolett.5b00256

    12. [12]

      Nusser K., Neueder S., Schneider G. J., Meyer M., Pyckhout-Hintzen W., Willner L., Radulescu A., Richter D.. Conformations of silica-poly(ethylene-propylene) nano-composites[J]. Macromolecules, 2010,43(23):9837-9847. doi: 10.1021/ma101898c

    13. [13]

      Sen S., Xie Y., Kumar S. K., Yang H., Bansal A., Ho D. L., Hall L., Hooper J. B., Schweizer K. S.. Chain conformations and bound-layer correlations in polymer nanocomposites[J]. Phys. Rev. Lett., 2007,98(12)128302. doi: 10.1103/PhysRevLett.98.128302

    14. [14]

      Jouault N., Dalmas F., Said S., di Cola E., Schweins R., Jestin J., Boué F.. Direct measurement of polymer chain conformation in well-controlled model nanocomposites by combining SANS and SAXS[J]. Macromolecules, 2010,43(23):9881-9891. doi: 10.1021/ma101682t

    15. [15]

      Genix A. C., Tatou M., Imaz A., Forcada J., Schweins R., Grillo I., Oberdisse J.. Modeling of intermediate structures and chain conformation in silica-latex nanocomposites observed by SANS during annealing[J]. Macromolecules, 2012,45(3):1663-1675. doi: 10.1021/ma202308c

    16. [16]

      Crawford M., Smalley R., Cohen G., Hogan B., Wood B., Kumar S., Melnichenko Y. B., He L., Guise W., Hammouda B.. Chain conformation in polymer nanocomposites with uniformly dispersed nanoparticles[J]. Phys. Rev. Lett., 2013,110(19)196001. doi: 10.1103/PhysRevLett.110.196001

    17. [17]

      Banc A., Genix A. C., Dupas C., Sztucki M., Schweins R., Appavou M. S., Oberdisse J.. Origin of small-angle scattering from contrast-matched nanoparticles:a study of chain and filler structure in polymer nanocomposites[J]. Macromolecules, 2015,48(18):6596-6605. doi: 10.1021/acs.macromol.5b01424

    18. [18]

      Jouault N., Crawford M. K., Chi C., Smalley R. J., Wood B., Jestin J., Melnichenko Y. B., He L., Guise W. E., Kumar S. K.. Polymer chain behavior in polymer nanocomposites with attractive interactions[J]. ACS Macro Lett., 2016,5(4):523-527. doi: 10.1021/acsmacrolett.6b00164

    19. [19]

      Ganesan V., Khounlavong L., Pryamitsyn V.. Equilibrium characteristics of semiflexible polymer solutions near probe particles[J]. Phys. Rev. E, 2008,78(5)051804.

    20. [20]

      Cui J., Li W., Jiang W.. Simulation study of co-assembly of ABC triblock copolymer/nanoparticle into multicompartment hybrids in selective solvent[J]. Chinese J. Polym. Sci., 2013,31(9):1225-1232. doi: 10.1007/s10118-013-1323-7

    21. [21]

      Khounlavong L., Ganesan V.. Influence of interfacial layers upon the barrier properties of polymer nanocomposites[J]. J. Chem. Phys., 2009,130(10)104901. doi: 10.1063/1.3079138

    22. [22]

      Frischknecht A. L., McGarrity E. S., Mackay M. E.. Expanded chain dimensions in polymer melts with nanoparticle fillers[J]. J. Chem. Phys., 2010,132(20)204901. doi: 10.1063/1.3428760

    23. [23]

      Ganesan V., Ellison C. J., Pryamitsyn V.. Mean-field models of structure and dispersion of polymer-nanoparticle mixtures[J]. Soft Matter, 2010,6(17):4010-4025. doi: 10.1039/b926992d

    24. [24]

      Vacatello M.. Chain dimensions in filled polymers:an intriguing problem[J]. Macromolecules, 2002,35(21):8191-8193. doi: 10.1021/ma020416s

    25. [25]

      Sharaf M. A., Mark J. E.. Monte Carlo simulations on the effects of nanoparticles on chain deformations and reinforcement in amorphous polyethylene networks[J]. Polymer, 2004,45(11):3943-3952. doi: 10.1016/j.polymer.2004.02.073

    26. [26]

      Takhulee, Ozisik, Vao-soongnern, V. Monte Carlo simulation of the structure of mono-and bidisperse polyethylene nanocomposites[J]. Chinese J. Polym. Sci., 2015,33(2):275-283. doi: 10.1007/s10118-015-1578-2

    27. [27]

      Vogiatzis G. G., Voyiatzis E., Theodorou D. N.. Monte Carlo simulations of a coarse grained model for an athermal all-polystyrene nanocomposite system[J]. Eur. Polym. J., 2011,47(4):699-712. doi: 10.1016/j.eurpolymj.2010.09.017

    28. [28]

      Ndoro T. V., Voyiatzis E., Ghanbari A., Theodorou D. N., Böhm M. C., Müller-Plathe F.. Interface of grafted and ungrafted silica nanoparticles with a polystyrene matrix:Atomistic molecular dynamics simulations[J]. Macromolecules, 2011,44(7):2316-2327. doi: 10.1021/ma102833u

    29. [29]

      Karatrantos A., Composto R. J., Winey K. I., Clarke N.. Structure and conformations of polymer/SWCNT nanocomposites[J]. Macromolecules, 2011,44(24):9830-9838. doi: 10.1021/ma201359s

    30. [30]

      Padmanabhan V., Frischknecht A. L., Mackay M. E.. Effect of chain stiffness on nanoparticle segregation in polymer/nanoparticle blends near a substrate[J]. Macromol. Theory Simul., 2012,21(2):98-105. doi: 10.1002/mats.201100048

    31. [31]

      Karatrantos A., Clarke N., Composto R. J., Winey K. I.. Polymer conformations in polymer nanocomposites containing spherical nanoparticles[J]. Soft Matter, 2015,11(2):382-388. doi: 10.1039/C4SM01980F

    32. [32]

      Karatrantos A., Clarke N., Kröger M.. Modeling of polymer structure and conformations in polymer nanocomposites from atomistic to mesoscale:a review[J]. Polym. Rev., 2016,56(3):385-428. doi: 10.1080/15583724.2015.1090450

    33. [33]

      Hall L. M., Anderson B. J., Zukoski C. F., Schweizer K. S.. Concentration fluctuations, local order, and the collective structure of polymer nanocomposites[J]. Macromolecules, 2009,42(21):8435-8442. doi: 10.1021/ma901523w

    34. [34]

      Frischknecht A. L., Padmanabhan V., Mackay M. E.. Surface-induced phase behavior of polymer/nanoparticle blends with attractions[J]. J. Chem. Phys., 2012,136(16). doi: 10.1063/1.4705308

    35. [35]

      Ebner C., Saam W., Stroud D.. Density-functional theory of simple classical fluids[J]. I. Surfaces. Phys. Rev. A, 1976,14(6):2264-2273.

    36. [36]

      Chandler D., McCoy J. D., Singer S. J.. Density functional theory of nonuniform polyatomic systems[J]. I. general formulation. J. Chem. Phys., 1986,85(10):5971-5976.  

    37. [37]

      Yu Y. X., Wu J.. Density functional theory for inhomogeneous mixtures of polymeric fluids[J]. J. Chem. Phys., 2002,117(5):2368-2376. doi: 10.1063/1.1491240

    38. [38]

      Yu Y. X., Gao G. H., Wang X. L.. Density functional theory study on the structure and capillary phase transition of a polymer melt in a slitlike pore:effect of attraction[J]. J. Phys. Chem. B, 2006,110(29):14418-14425. doi: 10.1021/jp060986k

    39. [39]

      Tripathi S., Chapman W.. Microstructure and thermodynamics of inhomogeneous polymer blends and solutions[J]. Phys. Rev. Lett., 2005,94(8)087801. doi: 10.1103/PhysRevLett.94.087801

    40. [40]

      Tripathi S., Chapman W. G.. Microstructure of inhomogeneous polyatomic mixtures from a density functional formalism for atomic mixtures[J]. J. Chem. Phys., 2005,122(9). doi: 10.1063/1.1853371

    41. [41]

      Yu Y. X., Wu J.. Extended test-particle method for predicting the inter-and intramolecular correlation functions of polymeric fluids[J]. J. Chem. Phys., 2003,118(8):3835-3842. doi: 10.1063/1.1539840

    42. [42]

      Yu Y. X., Wu J. Z., You F. Q., Gao G. H.. A Self-consistent theory for the inter-and intramolecular correlation functions of a Hard-Sphere-Yukawa-Chain fluids[J]. Chinese Phys. Lett., 2005,22(1):246-249. doi: 10.1088/0256-307X/22/1/071

    43. [43]

      Bymaster A.. "Molecular modeling the microstructure and phase behavior of bulk and inhomogeneous complex fluids"[J]. Thesis, Rice University, 2009.  

    44. [44]

      Everaers R., Ejtehadi M.. Interaction potentials for soft and hard ellipsoids[J]. Phys. Rev. E, 2003,67(4)041710. doi: 10.1103/PhysRevE.67.041710

    45. [45]

      Frischknecht A. L., Curro J. G.. Improved united atom force field for poly(dimethylsiloxane)[J]. Macromolecules, 2003,36(6):2122-2129. doi: 10.1021/ma025763g

    46. [46]

      Striolo A., McCabe C., Cummings P. T., Chan E. R., Glotzer S. C.. Aggregation of POSS monomers in liquid hexane:a molecular-simulation study[J]. J. Phys. Chem. B, 2007,111(42):12248-12256. doi: 10.1021/jp071730x

    47. [47]

      Rosenfeld Y.. Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing[J]. Phys. Rev. Lett., 1989,63(9):980-983. doi: 10.1103/PhysRevLett.63.980

    48. [48]

      Hansen, J. P.; McDonald, I., "Theory of Simple Liquids", Academic Press, New York, 1986.

    49. [49]

      Jain S., Dominik A., Chapman W. G.. Modified interfacial statistical associating fluid theory:a perturbation density functional theory for inhomogeneous complex fluids[J]. J. Chem. Phys., 2007,127(24)244904. doi: 10.1063/1.2806932

    50. [50]

      Chapman W. G., Jackson G., Gubbins K. E.. Phase equilibria of associating fluids[J]. Mol. Phys., 1988,65(5):1057-1079. doi: 10.1080/00268978800101601

    51. [51]

      Tree D. R., Muralidhar A., Doyle P. S., Dorfman K. D.. Is DNA a good model polymer?[J]. Macromolecules, 2013,46(20):8369-8382. doi: 10.1021/ma401507f

    52. [52]

      Honnell K. G., Curro J. G., Schweizer K. S.. Local structure of semiflexible polymer melts[J]. Macromolecules, 1990,23(14):3496-3505. doi: 10.1021/ma00216a018

    53. [53]

      Yethiraj A., Hall C. K.. Monte Carlo simulations and integral equation theory for microscopic correlations in polymeric fluids[J]. J. Chem. Phys., 1992,96(1):797-807. doi: 10.1063/1.462465

    54. [54]

      Edwards C. J. C., Richards R. W., Stepto R. F. T., Dodgson K., Higgins J. S., Semlyen J. A.. Studies of cyclic and linear poly(dimethyl siloxanes).14. particle scattering functions[J]. Polymer, 1984,25(3):365-368.  

    55. [55]

      Arrighi V., Gagliardi S., Dagger A. C., Semlyen J. A., Higgins J. S., Shenton M. J.. Conformation of cyclics and linear chain polymers in bulk by SANS[J]. Macromolecules, 2004,37(21):8057-8065. doi: 10.1021/ma049565w

    56. [56]

      Wei Z., Hou Y., Ning N., Zhang L., Tian M., Mi J.. Theoretical insight into dispersion of silica nanoparticles in polymer melts[J]. J. Phys. Chem. B, 2015,119(30):9940-9948. doi: 10.1021/acs.jpcb.5b01399

  • 加载中
    1. [1]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    2. [2]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    3. [3]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    4. [4]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    5. [5]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    6. [6]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    7. [7]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    8. [8]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    9. [9]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    10. [10]

      Ze ZhangLei YangJin-Ru LiuHao HuJian-Li MiChao SuBei-Bei XiaoZhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013

    11. [11]

      Chaozheng HeMenghui XiChenxu ZhaoRan WangLing FuJinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671

    12. [12]

      Mianfeng LiHaozhi WangZijun YangZexiang YinYuan LiuYingmei BianYang WangXuerong ZhengYida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199

    13. [13]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    14. [14]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    15. [15]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    16. [16]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    17. [17]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    18. [18]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    19. [19]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    20. [20]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

Metrics
  • PDF Downloads(0)
  • Abstract views(819)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return