Citation: Zhao-Yang Wei, Nan-Ying Ning, Ming Tian, Li-Qun Zhang, Jian-Guo Mi. Theoretical Interpretation of Conformation Variations of Polydimethylsiloxane Induced by Nanoparticles[J]. Chinese Journal of Polymer Science, ;2018, 36(4): 505-513. doi: 10.1007/s10118-018-2019-9 shu

Theoretical Interpretation of Conformation Variations of Polydimethylsiloxane Induced by Nanoparticles

  • There has been controversy as to whether the addition of nanoparticles to a polymer melt causes perturbed chain structure of polymers. In this work, the chain conformations of polydimethylsiloxane (PDMS) with addition of polyhedral oligomeric silsesquioxane (POSS) nanoparticles have been studied using a classical density functional approach. Under the strong interactions of POSS-PDMS, the radius of gyration of PDMS in the nanocomposites can either increase or decline depending on particle loading. After adding nanoparticles with larger size or weaker interactions, both the increasing and the declining amplitudes can be largely suppressed. The results provide a deep understanding of chain conformation in polymer nanocomposites.
  • 加载中
    1. [1]

      Paul D. R., Robeson L. M.. Polymer nanotechnology:Nanocomposites[J]. Polymer, 2008,49(15):3187-3204. doi: 10.1016/j.polymer.2008.04.017

    2. [2]

      Ganesan V.. Some issues in polymer nanocomposites:theoretical and modeling opportunities for polymer physics[J]. J. Polym. Sci., Part B:Polym. Phys., 2008,46(24):2666-2671. doi: 10.1002/polb.v46:24

    3. [3]

      Pandey Y. N., Papakonstantopoulos G. J., Doxastakis M.. Polymer/nanoparticle interactions:bridging the gap[J]. Macromolecules, 2013,46(13):5097-5106. doi: 10.1021/ma400444w

    4. [4]

      Kumar S. K., Krishnamoorti R.. Nanocomposites:structure, phase behavior, and properties[J]. Annu. Rev. Chem. Biomol. Eng., 2010,1:37-58. doi: 10.1146/annurev-chembioeng-073009-100856

    5. [5]

      Allegra G., Raos G., Vacatello M.. Theories and simulations of polymer-based nanocomposites:from chain statistics to reinforcement[J]. Prog. Polym. Sci., 2008,33(7):683-731. doi: 10.1016/j.progpolymsci.2008.02.003

    6. [6]

      Genix A. C., Oberdisse J.. Structure and dynamics of polymer nanocomposites studied by X-ray and neutron scattering techniques[J]. Curr. Opin. Colloid Interface Sci., 2015,20(4):293-303. doi: 10.1016/j.cocis.2015.10.002

    7. [7]

      Nakatani A., Chen W., Schmidt R., Gordon G., Han C. C.. Chain dimensions in polysilicate-filled poly(dimethyl siloxane)[J]. Polymer, 2001,42(8):3713-3722. doi: 10.1016/S0032-3861(00)00771-0

    8. [8]

      Mackay M. E., Tuteja A., Duxbury P. M., Hawker C. J., van Horn B., Guan Z., Chen G., Krishnan R. S.. General strategies for nanoparticle dispersion[J]. Science, 2006,311(5768):1740-1743. doi: 10.1126/science.1122225

    9. [9]

      Tuteja A., Duxbury P. M., Mackay M. E.. Polymer chain swelling induced by dispersed nanoparticles[J]. Phys. Rev. Lett., 2008,100(7)077801. doi: 10.1103/PhysRevLett.100.077801

    10. [10]

      Tung W. S., Bird V., Composto R. J., Clarke N., Winey K. I.. Polymer chain conformations in CNT/PS nanocomposites from small angle neutron scattering[J]. Macromolecules, 2013,46(13):5345-5354. doi: 10.1021/ma400765v

    11. [11]

      Tung W. S., Composto R. J., Clarke N., Winey K. I.. Anisotropic polymer conformations in aligned SWCNT/PS nanocomposites[J]. ACS Macro Lett., 2015,4(9):916-920. doi: 10.1021/acsmacrolett.5b00256

    12. [12]

      Nusser K., Neueder S., Schneider G. J., Meyer M., Pyckhout-Hintzen W., Willner L., Radulescu A., Richter D.. Conformations of silica-poly(ethylene-propylene) nano-composites[J]. Macromolecules, 2010,43(23):9837-9847. doi: 10.1021/ma101898c

    13. [13]

      Sen S., Xie Y., Kumar S. K., Yang H., Bansal A., Ho D. L., Hall L., Hooper J. B., Schweizer K. S.. Chain conformations and bound-layer correlations in polymer nanocomposites[J]. Phys. Rev. Lett., 2007,98(12)128302. doi: 10.1103/PhysRevLett.98.128302

    14. [14]

      Jouault N., Dalmas F., Said S., di Cola E., Schweins R., Jestin J., Boué F.. Direct measurement of polymer chain conformation in well-controlled model nanocomposites by combining SANS and SAXS[J]. Macromolecules, 2010,43(23):9881-9891. doi: 10.1021/ma101682t

    15. [15]

      Genix A. C., Tatou M., Imaz A., Forcada J., Schweins R., Grillo I., Oberdisse J.. Modeling of intermediate structures and chain conformation in silica-latex nanocomposites observed by SANS during annealing[J]. Macromolecules, 2012,45(3):1663-1675. doi: 10.1021/ma202308c

    16. [16]

      Crawford M., Smalley R., Cohen G., Hogan B., Wood B., Kumar S., Melnichenko Y. B., He L., Guise W., Hammouda B.. Chain conformation in polymer nanocomposites with uniformly dispersed nanoparticles[J]. Phys. Rev. Lett., 2013,110(19)196001. doi: 10.1103/PhysRevLett.110.196001

    17. [17]

      Banc A., Genix A. C., Dupas C., Sztucki M., Schweins R., Appavou M. S., Oberdisse J.. Origin of small-angle scattering from contrast-matched nanoparticles:a study of chain and filler structure in polymer nanocomposites[J]. Macromolecules, 2015,48(18):6596-6605. doi: 10.1021/acs.macromol.5b01424

    18. [18]

      Jouault N., Crawford M. K., Chi C., Smalley R. J., Wood B., Jestin J., Melnichenko Y. B., He L., Guise W. E., Kumar S. K.. Polymer chain behavior in polymer nanocomposites with attractive interactions[J]. ACS Macro Lett., 2016,5(4):523-527. doi: 10.1021/acsmacrolett.6b00164

    19. [19]

      Ganesan V., Khounlavong L., Pryamitsyn V.. Equilibrium characteristics of semiflexible polymer solutions near probe particles[J]. Phys. Rev. E, 2008,78(5)051804.

    20. [20]

      Cui J., Li W., Jiang W.. Simulation study of co-assembly of ABC triblock copolymer/nanoparticle into multicompartment hybrids in selective solvent[J]. Chinese J. Polym. Sci., 2013,31(9):1225-1232. doi: 10.1007/s10118-013-1323-7

    21. [21]

      Khounlavong L., Ganesan V.. Influence of interfacial layers upon the barrier properties of polymer nanocomposites[J]. J. Chem. Phys., 2009,130(10)104901. doi: 10.1063/1.3079138

    22. [22]

      Frischknecht A. L., McGarrity E. S., Mackay M. E.. Expanded chain dimensions in polymer melts with nanoparticle fillers[J]. J. Chem. Phys., 2010,132(20)204901. doi: 10.1063/1.3428760

    23. [23]

      Ganesan V., Ellison C. J., Pryamitsyn V.. Mean-field models of structure and dispersion of polymer-nanoparticle mixtures[J]. Soft Matter, 2010,6(17):4010-4025. doi: 10.1039/b926992d

    24. [24]

      Vacatello M.. Chain dimensions in filled polymers:an intriguing problem[J]. Macromolecules, 2002,35(21):8191-8193. doi: 10.1021/ma020416s

    25. [25]

      Sharaf M. A., Mark J. E.. Monte Carlo simulations on the effects of nanoparticles on chain deformations and reinforcement in amorphous polyethylene networks[J]. Polymer, 2004,45(11):3943-3952. doi: 10.1016/j.polymer.2004.02.073

    26. [26]

      Takhulee, Ozisik, Vao-soongnern, V. Monte Carlo simulation of the structure of mono-and bidisperse polyethylene nanocomposites[J]. Chinese J. Polym. Sci., 2015,33(2):275-283. doi: 10.1007/s10118-015-1578-2

    27. [27]

      Vogiatzis G. G., Voyiatzis E., Theodorou D. N.. Monte Carlo simulations of a coarse grained model for an athermal all-polystyrene nanocomposite system[J]. Eur. Polym. J., 2011,47(4):699-712. doi: 10.1016/j.eurpolymj.2010.09.017

    28. [28]

      Ndoro T. V., Voyiatzis E., Ghanbari A., Theodorou D. N., Böhm M. C., Müller-Plathe F.. Interface of grafted and ungrafted silica nanoparticles with a polystyrene matrix:Atomistic molecular dynamics simulations[J]. Macromolecules, 2011,44(7):2316-2327. doi: 10.1021/ma102833u

    29. [29]

      Karatrantos A., Composto R. J., Winey K. I., Clarke N.. Structure and conformations of polymer/SWCNT nanocomposites[J]. Macromolecules, 2011,44(24):9830-9838. doi: 10.1021/ma201359s

    30. [30]

      Padmanabhan V., Frischknecht A. L., Mackay M. E.. Effect of chain stiffness on nanoparticle segregation in polymer/nanoparticle blends near a substrate[J]. Macromol. Theory Simul., 2012,21(2):98-105. doi: 10.1002/mats.201100048

    31. [31]

      Karatrantos A., Clarke N., Composto R. J., Winey K. I.. Polymer conformations in polymer nanocomposites containing spherical nanoparticles[J]. Soft Matter, 2015,11(2):382-388. doi: 10.1039/C4SM01980F

    32. [32]

      Karatrantos A., Clarke N., Kröger M.. Modeling of polymer structure and conformations in polymer nanocomposites from atomistic to mesoscale:a review[J]. Polym. Rev., 2016,56(3):385-428. doi: 10.1080/15583724.2015.1090450

    33. [33]

      Hall L. M., Anderson B. J., Zukoski C. F., Schweizer K. S.. Concentration fluctuations, local order, and the collective structure of polymer nanocomposites[J]. Macromolecules, 2009,42(21):8435-8442. doi: 10.1021/ma901523w

    34. [34]

      Frischknecht A. L., Padmanabhan V., Mackay M. E.. Surface-induced phase behavior of polymer/nanoparticle blends with attractions[J]. J. Chem. Phys., 2012,136(16). doi: 10.1063/1.4705308

    35. [35]

      Ebner C., Saam W., Stroud D.. Density-functional theory of simple classical fluids[J]. I. Surfaces. Phys. Rev. A, 1976,14(6):2264-2273.

    36. [36]

      Chandler D., McCoy J. D., Singer S. J.. Density functional theory of nonuniform polyatomic systems[J]. I. general formulation. J. Chem. Phys., 1986,85(10):5971-5976.  

    37. [37]

      Yu Y. X., Wu J.. Density functional theory for inhomogeneous mixtures of polymeric fluids[J]. J. Chem. Phys., 2002,117(5):2368-2376. doi: 10.1063/1.1491240

    38. [38]

      Yu Y. X., Gao G. H., Wang X. L.. Density functional theory study on the structure and capillary phase transition of a polymer melt in a slitlike pore:effect of attraction[J]. J. Phys. Chem. B, 2006,110(29):14418-14425. doi: 10.1021/jp060986k

    39. [39]

      Tripathi S., Chapman W.. Microstructure and thermodynamics of inhomogeneous polymer blends and solutions[J]. Phys. Rev. Lett., 2005,94(8)087801. doi: 10.1103/PhysRevLett.94.087801

    40. [40]

      Tripathi S., Chapman W. G.. Microstructure of inhomogeneous polyatomic mixtures from a density functional formalism for atomic mixtures[J]. J. Chem. Phys., 2005,122(9). doi: 10.1063/1.1853371

    41. [41]

      Yu Y. X., Wu J.. Extended test-particle method for predicting the inter-and intramolecular correlation functions of polymeric fluids[J]. J. Chem. Phys., 2003,118(8):3835-3842. doi: 10.1063/1.1539840

    42. [42]

      Yu Y. X., Wu J. Z., You F. Q., Gao G. H.. A Self-consistent theory for the inter-and intramolecular correlation functions of a Hard-Sphere-Yukawa-Chain fluids[J]. Chinese Phys. Lett., 2005,22(1):246-249. doi: 10.1088/0256-307X/22/1/071

    43. [43]

      Bymaster A.. "Molecular modeling the microstructure and phase behavior of bulk and inhomogeneous complex fluids"[J]. Thesis, Rice University, 2009.  

    44. [44]

      Everaers R., Ejtehadi M.. Interaction potentials for soft and hard ellipsoids[J]. Phys. Rev. E, 2003,67(4)041710. doi: 10.1103/PhysRevE.67.041710

    45. [45]

      Frischknecht A. L., Curro J. G.. Improved united atom force field for poly(dimethylsiloxane)[J]. Macromolecules, 2003,36(6):2122-2129. doi: 10.1021/ma025763g

    46. [46]

      Striolo A., McCabe C., Cummings P. T., Chan E. R., Glotzer S. C.. Aggregation of POSS monomers in liquid hexane:a molecular-simulation study[J]. J. Phys. Chem. B, 2007,111(42):12248-12256. doi: 10.1021/jp071730x

    47. [47]

      Rosenfeld Y.. Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing[J]. Phys. Rev. Lett., 1989,63(9):980-983. doi: 10.1103/PhysRevLett.63.980

    48. [48]

      Hansen, J. P.; McDonald, I., "Theory of Simple Liquids", Academic Press, New York, 1986.

    49. [49]

      Jain S., Dominik A., Chapman W. G.. Modified interfacial statistical associating fluid theory:a perturbation density functional theory for inhomogeneous complex fluids[J]. J. Chem. Phys., 2007,127(24)244904. doi: 10.1063/1.2806932

    50. [50]

      Chapman W. G., Jackson G., Gubbins K. E.. Phase equilibria of associating fluids[J]. Mol. Phys., 1988,65(5):1057-1079. doi: 10.1080/00268978800101601

    51. [51]

      Tree D. R., Muralidhar A., Doyle P. S., Dorfman K. D.. Is DNA a good model polymer?[J]. Macromolecules, 2013,46(20):8369-8382. doi: 10.1021/ma401507f

    52. [52]

      Honnell K. G., Curro J. G., Schweizer K. S.. Local structure of semiflexible polymer melts[J]. Macromolecules, 1990,23(14):3496-3505. doi: 10.1021/ma00216a018

    53. [53]

      Yethiraj A., Hall C. K.. Monte Carlo simulations and integral equation theory for microscopic correlations in polymeric fluids[J]. J. Chem. Phys., 1992,96(1):797-807. doi: 10.1063/1.462465

    54. [54]

      Edwards C. J. C., Richards R. W., Stepto R. F. T., Dodgson K., Higgins J. S., Semlyen J. A.. Studies of cyclic and linear poly(dimethyl siloxanes).14. particle scattering functions[J]. Polymer, 1984,25(3):365-368.  

    55. [55]

      Arrighi V., Gagliardi S., Dagger A. C., Semlyen J. A., Higgins J. S., Shenton M. J.. Conformation of cyclics and linear chain polymers in bulk by SANS[J]. Macromolecules, 2004,37(21):8057-8065. doi: 10.1021/ma049565w

    56. [56]

      Wei Z., Hou Y., Ning N., Zhang L., Tian M., Mi J.. Theoretical insight into dispersion of silica nanoparticles in polymer melts[J]. J. Phys. Chem. B, 2015,119(30):9940-9948. doi: 10.1021/acs.jpcb.5b01399

  • 加载中
    1. [1]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    2. [2]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    3. [3]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    4. [4]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    5. [5]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    6. [6]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    7. [7]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    8. [8]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    9. [9]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    10. [10]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    11. [11]

      Yifei ZhangYuncong XueLaiwei GaoRui LiaoFeng WangFei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217

    12. [12]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    13. [13]

      Hui GuMingyue GaoKuan ShenTianli ZhangJunhao ZhangXiangjun ZhengXingmei GuoYuanjun LiuFu CaoHongxing GuQinghong KongShenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273

    14. [14]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    15. [15]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    16. [16]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    17. [17]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    18. [18]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    19. [19]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    20. [20]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

Metrics
  • PDF Downloads(0)
  • Abstract views(695)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return