Citation: Sen-Lin Gu, Huan-Huan Liu, Huan Cao, Claude Mercier, Yong-Jin Li. Investigations on the Interactions between Li-TFSI and Glass Fibers in the Ternary PP/GF/Li-TFSI Composites[J]. Chinese Journal of Polymer Science, ;2018, 36(1): 113-118. doi: 10.1007/s10118-018-2018-x shu

Investigations on the Interactions between Li-TFSI and Glass Fibers in the Ternary PP/GF/Li-TFSI Composites

  • Corresponding author: Yong-Jin Li, yongjin-li@hznu.edu.cn
  • Received Date: 6 July 2017
    Accepted Date: 8 August 2017
    Available Online: 30 October 2017

  • The polypropylene/glass fiber (PP/GF) composites with excellent antistatic performance and improved mechanical properties have been reported by incorporation of a very small amount of the organic salt, lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI), into the PP/GF composites. It was considered that GF could play the role as the pathways for the movements of ions in the ternary composites. In this work, the interactions between Li-TFSI and glass fiber and the effects of such interactions on the physical properties of the composites have been systematically investigated. Three types of glass fibers with different-OH group concentrations have been prepared in order to compare the interactions between GF and Li-TFSI. It was found that the-OH group concentrations on the surface of glass fiber have significant effects on interactions between glass fibers and Li-TFSI. Such interactions are crucial for both the antistatic and mechanical performances of the final PP/GF/Li-TFSI composites. The investigation indicated that the GF with high-OH group concentrations confined the movement of TFSI-, which decreased the antistatic properties of PP/GF/Li-TFSI composites. On the other hand, the GF with low-OH group concentrations inhibited the absorption of Li-TFSI onto the GF, which also hindered the formation of Li-TFSI conductive pathway. The best antistatic performance of the ternary composites can be achieved at the intermediate-OH concentrations on the GF.
  • 加载中
    1. [1]

      Gulrez S. K. H., Ali Mohsin M. E., Shaikh H., Anis A., Pulose A. M., Yadav M. K., Qua E. H. P., Al-Zahrani S. M.. A review on electrically conductive polypropylene and polyethylene[J]. Polym. Compos., 2014,35(5):900-914. doi: 10.1002/pc.v35.5

    2. [2]

      Maki N., Nakano S., Sasaki H.. Development of a packaging material using non-bleed-type antistatic ionomer[J]. Packag. Technol. Sci., 2004,17(5):249-256. doi: 10.1002/(ISSN)1099-1522

    3. [3]

      Yoon S. W., Lee S., Choi I. S., Do Y., Park S.. Electrical and mechanical properties of polyethylene/MWCNT composites produced by polymerization using Cp2ZrCl2 supported on MWCNTs[J]. Macromol. Res., 2015,23(8):713-718. doi: 10.1007/s13233-015-3096-z

    4. [4]

      Dudler V., Grob M. C., Mérian D.. Percolation network in polyolefins containing antistatic additives imaging by low voltage scanning electron microscopy[J]. Polym. Degrad. Stab., 2000,68(3):373-379. doi: 10.1016/S0141-3910(00)00021-5

    5. [5]

      Ding Y., Tang H., Zhang X., Wu S., Xiong R.. Effects of 1-n-tetradecyl-3-methylimidazolium bromide on the properties of polypropylene[J]. J. Appl. Polym. Sci., 2008,109(2):1138-1142. doi: 10.1002/(ISSN)1097-4628

    6. [6]

      Ding Y., Tang H., Zhang X., Wu S., Xiong R.. Antistatic ability of 1-n-tetradecyl-3-methylimidazolium bromide and its effects on the structure and properties of polypropylene[J]. Eur. Polym. J., 2008,44(4):1247-1251. doi: 10.1016/j.eurpolymj.2008.01.030

    7. [7]

      Grob M. C., Minder E.. Permanent antistatic additives:new developments[J]. Plast. Addit. Compd., 1999,1(3):20-26. doi: 10.1016/S1464-391X(99)80074-9

    8. [8]

      Li C., Liang T., Lu W., Tang C., Hu X., Cao M., Liang J.. Improving the antistatic ability of polypropylene fibers by inner antistatic agent filled with carbon nanotubes[J]. Compos. Sci. Technol., 2004,64(13-14):2089-2096. doi: 10.1016/j.compscitech.2004.03.010

    9. [9]

      Wang X., Liu L., Tan J.. Preparation of an ionic-liquid antistatic/photostabilization additive and its effects on polypropylene[J]. J. Vinyl Addit. Technol., 2010,16(1):58-63. doi: 10.1002/vnl.v16:1.n

    10. [10]

      Williams J. B., Geick K. S., Falter J. A., Hall L. K.. Optimization of antistatic additives in polypropylene[J]. J. Vinyl Addit. Technol., 1995,1(4):282-285. doi: 10.1002/vnl.730010418

    11. [11]

      Zheng A., Xu X., Xiao H., Li N., Guan Y., Li S.. Antistatic modification of polypropylene by incorporating Tween/modified Tween[J]. Appl. Surf. Sci., 2012,258(22):8861-8866. doi: 10.1016/j.apsusc.2012.05.105

    12. [12]

      Jiang X., Bin Y., Kikyotani N., Matsuo M.. Thermal, electrical and mechanical properties of ultra-high molecular weight polypropylene and carbon filler composites[J]. Polym. J., 2006,28(5):419-431.  

    13. [13]

      King J. A., Johnson B. A., Via M. D., Ciarkowski C. J.. Effects of carbon fillers in thermally conductive polypropylene based resins[J]. Polym. Compos., 2010,31(3):497-506.  

    14. [14]

      Li C., Li Z., Zhang B., Lu W., Tang Y., Fang G., Hu X., Liang J.. Modifying the poly ether ester antistatic agent by carbon nanotubes, the antistatic effect on polypropylene fibers[J]. Prog. Nat. Sci., 2004,14(9):805-810. doi: 10.1080/10020070412331344361

    15. [15]

      Moskalyuk O. A., Aleshin A. N., Tsobkallo E. S., Krestinin A. V., Yudin V. E.. Electrical conductivity of polypropylene fibers with dispersed carbon fillers[J]. Phys. Solid State., 2012,54(10):2122-2127. doi: 10.1134/S1063783412100253

    16. [16]

      Fujita K., Murata K., Masuda M., Nakamura N., Ohno H.. Ionic liquids designed for advanced applications in bioelectrochemistry[J]. RSC Adv., 2012,2(10):4018-4030. doi: 10.1039/c2ra01045c

    17. [17]

      Tokuda H., Hayamizu K., Ishii K., Watanabe M.. Physicochemical properties and structures of room temperature ionic liquids.1. Variation of anionic species[J]. J. Phys. Chem. B, 2004,108(42):16593-16600. doi: 10.1021/jp047480r

    18. [18]

      Tokuda H., Hayamizu K., Ishii K., Susan M. A., Watanabe M.. Physicochemical properties and structures of room temperature ionic liquids.2. Variation of alkyl chain length in imidazolium cation[J]. J. Phys. Chem. B, 2005,109(13):6103-6110. doi: 10.1021/jp044626d

    19. [19]

      Tokuda H., Ishii K., Susan M. A., Tsuzuki S., Hayamizu K., Watanabe M.. Physicochemical properties and structures of room-temperature ionic liquids.3. Variation of cationic structures[J]. J. Phys. Chem. B, 2006,110(6):2833-2839. doi: 10.1021/jp053396f

    20. [20]

      Tokuda H., Tsuzuki S., Susan M. A. B. H., Hayamizu K., Watanabe M.. How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties[J]. J. Phys. Chem. B, 2006,110(39):19593-19600. doi: 10.1021/jp064159v

    21. [21]

      Xing C., Zheng X., Xu L., Jia J., Ren J., Li Y.. Toward an optically transparent, antielectrostatic, and robust polymer composite:morphology and properties of polycarbonate/ionic liquid composites[J]. Ind. Eng. Chem. Res, 2014,53(11):4304-4311. doi: 10.1021/ie404096b

    22. [22]

      Gu S., Zhu L., Mercier C., Li Y.. Glass fiber networks as an orbit for ions:fabrication of excellent antistatic PP/GF composites with extremely low organic salts loadings[J]. ACS Appl. Mater. Interfaces, 2017,9(21):18305-18313. doi: 10.1021/acsami.7b04921

    23. [23]

      Ishida H., Koenig J. L.. Fourier transform infrared spectroscopic study of the structure of silane coupling agent on E-glass fiber[J]. J. Colloid Interface Sci., 1978,64(3):565-576. doi: 10.1016/0021-9797(78)90399-5

    24. [24]

      Herstedt M., Smirnov M., Johansson P., Chami M., Grondin J., Servant L., Lassègues J. C.. Spectroscopic characterization of the conformational states of the bis(trifluorome-thanesulfonyl)imide anion (TFSI-)[J]. J. Raman Spectrosc., 2005,36(8):762-770. doi: 10.1002/(ISSN)1097-4555

    25. [25]

      Rey I., Johansson P., Lindgren J., Lassègues J. C., Grondin J., Servant L.. Spectroscopic and theoretical study of (CF3SO2)2 N-(TFSI-) and (CF3SO2)2 NH (HTFSI)[J]. J. Phys. Chem. A, 1998,102(19):3249-3258. doi: 10.1021/jp980375v

    26. [26]

      Egashira M., Todo H., Yoshimoto N., Morita M.. Lithium ion conduction in ionic liquid-based gel polymer electrolyte[J]. J. Power Sources, 2008,178(2):729-735. doi: 10.1016/j.jpowsour.2007.10.063

    27. [27]

      Borodin O., Smith D. S.. Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations[J]. Macromolecules, 2014,39(4):1620-1629.  

  • 加载中
    1. [1]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    2. [2]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    3. [3]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    4. [4]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    5. [5]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    6. [6]

      Ziling JiangShaoqing ChenChaochao WeiZiqi ZhangZhongkai WuQiyue LuoLiang MingLong ZhangChuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561

    7. [7]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    8. [8]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    9. [9]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    10. [10]

      Yuling MaDongqing LiuTao ZhangChengjie SongDongmei LiuPeizhi WangWei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000

    11. [11]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

    12. [12]

      Yongjian LiXinyu ZhuChenxi WeiYouyou FangXinyu WangYizhi ZhaiWenlong KangLai ChenDuanyun CaoMeng WangYun LuQing HuangYuefeng SuHong YuanNing LiFeng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536

    13. [13]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

    14. [14]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    15. [15]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    16. [16]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    17. [17]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    18. [18]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    19. [19]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    20. [20]

      Liyong DUYi LIUGuoli YANG . Preparation and triethylamine sensing performance of ZnSnO3/NiO heterostructur. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 729-740. doi: 10.11862/CJIC.20240404

Metrics
  • PDF Downloads(0)
  • Abstract views(784)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return