Citation: Yu-Feng Lyu, Zhi-Jie Zhang, Chang Liu, Zhi Geng, Long-Cheng Gao, Quan Chen. Random Binary Brush Architecture Enhances both Ionic Conductivity and Mechanical Strength at Room Temperature[J]. Chinese Journal of Polymer Science, ;2018, 36(1): 78-84. doi: 10.1007/s10118-018-2016-z shu

Random Binary Brush Architecture Enhances both Ionic Conductivity and Mechanical Strength at Room Temperature

  • Corresponding author: Long-Cheng Gao, lcgao@buaa.edu.cn Quan Chen, qchen@ciac.ac.cn
  • These authors contributed to this work equally
  • Received Date: 26 June 2017
    Accepted Date: 2 August 2017
    Available Online: 30 October 2017

  • The ionic conductivity and the mechanical strength are two key factors for the performance of poly(ethylene oxide) (PEO) based polyelectrolytes. However, crystallized PEO suppresses ion conductivity at low temperature and melted PEO has low mechanical strength at high temperature. Here, random binary brush copolymer composed of PEO- and polystyrene (PS)-based side chains is synthesized. PEO crystallinity is suppressed by the introduction of PS brushes. Doping with lithium trifluoromethanesulfonate (LiTf) induces microphase separation. Due to a random arrangement of the brushes, the microphase segregation is incomplete even at high salt loading, which provides both high ionic conductivity and high mechanical strength at room temperature. These results provide opportunities for the design of polymeric electrolytes to be used at room temperature.
  • 加载中
    1. [1]

      Manuel S. A.. Review on gel polymer electrolytes for lithium batteries[J]. Eur. Polym. J., 2006,42(1):21-42. doi: 10.1016/j.eurpolymj.2005.09.017

    2. [2]

      Tarascon J. M., Armand M.. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001,414(6861):359-367. doi: 10.1038/35104644

    3. [3]

      Fenton D. E., Parker J. M., Wright P. V.. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973,14(11):589-589.  

    4. [4]

      Patel S. N., Javier A. E., Stone G. M., Mullin S. A., Balsara N. P.. Simultaneous conduction of electronic charge and lithium ions in block copolymers[J]. ACS Nano, 2012,6(2):1589-1600. doi: 10.1021/nn2045664

    5. [5]

      Yang L. Y., Wei D. X., Xu M., Yao Y. F., Chen Q.. Transferring lithium ions in nanochannels:a PEO/Li+ solid polymer electrolyte design[J]. Angew. Chem. Int. Ed., 2014,53(14):3631-3635. doi: 10.1002/anie.v53.14

    6. [6]

      Vöge A., Deimede V., Paloukis F., Neophytides S. G., Kallitsis J. K.. Synthesis and properties of aromatic polyethers containing poly(ethylene oxide) side chains as polymer electrolytes for lithium ion batteries[J]. Mater. Chem. Phys., 2014,148(1-2):57-66. doi: 10.1016/j.matchemphys.2014.07.012

    7. [7]

      Sinha K., Maranas J.. Does ion aggregation impact polymer dynamics and conductivity in PEO-based single ion conductors?[J]. Macromolecules, 2014,47(8):2718-2726. doi: 10.1021/ma401856z

    8. [8]

      Gao S., Zhong J., Xue G., Wang B.. Ion conductivity improved polyethylene oxide/lithium perchlorate electrolyte membranes modified by graphene oxide[J]. J. Membr. Sci., 2014,470:316-322. doi: 10.1016/j.memsci.2014.07.044

    9. [9]

      Sun J., Stone G. M., Balsara N. P., Zuckermann R. N.. Structure-conductivity relationship for peptoid-based PEOmimetic polymer electrolytes[J]. Macromolecules, 2012,45(12):5151-5156. doi: 10.1021/ma300775b

    10. [10]

      Christie A. M., Lilley S. J., Staunton E., Andreev Y. G., Bruce P. G.. Increasing the conductivity of crystalline polymer electrolytes[J]. Nature, 2005,433(7021):50-53. doi: 10.1038/nature03186

    11. [11]

      Xiao Q., Wang X., Li W., Li Z., Zhang T., Zhang H.. Macroporous polymer electrolytes based on PVDF/PEO-bPMMA block copolymer blends for rechargeable lithium ion battery[J]. J. Membr. Sci., 2009,334(1-2):117-122. doi: 10.1016/j.memsci.2009.02.018

    12. [12]

      Song J. J., Wang Y. Y., Wan C. C.. Review of gel-type polymer electrolytes for lithium ion batteries[J]. J. Power Sources, 1999,77(2):183-197. doi: 10.1016/S0378-7753(98)00193-1

    13. [13]

      Fontenella J. J., Wintergill M. C., Calame J. P., Andeen C. G.. Electrical relaxation in pure and alkali metal thiocynate complexed with poly(ethylene oxide)[J]. Solid State Ionics, 1983,8(4):333-339. doi: 10.1016/0167-2738(83)90009-7

    14. [14]

      Chen H. W., Chang F. C.. The novel polymer electrolyte nanocomposite composed of poly(ethylene oxide), lithium triflate and mineral clay[J]. Polymer, 2001,42(24):9763-9769. doi: 10.1016/S0032-3861(01)00520-1

    15. [15]

      Panday A., Mullin S., Gomez E. D., Wanakule N., Chen V. L., Hexemer A., Pople J., Balsara N. P.. Effect of molecular weight and salt concentration on conductivity of block copolymer electrolytes[J]. Macromolecules, 2009,42(13):4632-4637. doi: 10.1021/ma900451e

    16. [16]

      Singh M., Odusanya O., Wilmes G. M., Eitouni H. B., Gomez E. D., Patel A. J., Chen V. L., Park M. J., Fragouli P., Iatrou H., Hadjichristidis N., Cookson D., Balsara N. P.. Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes[J]. Macromolecules, 2007,40(13):4578-4585. doi: 10.1021/ma0629541

    17. [17]

      Stone G. M., Mullin S. A., Teran A. A., Hallinan D. T., Minor A. M., Hexemer A., Balsara N. P.. Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries[J]. J. Electrochem. Soc., 2012,159(3):A222-A227. doi: 10.1149/2.030203jes

    18. [18]

      Choi S., Cho B. K.. Liquid crystalline and ion-conducting properties of mesogenic dendron-coil-dendron copolymers:characterization of LC phases using normalized conductivity[J]. Soft Matter, 2013,9(16):4241-4248. doi: 10.1039/c3sm27959f

    19. [19]

      Inceoglu S., Rojas A. A., Devaux D., Chen X. C., Stone G. M., Balsara N. P.. Morphology-conductivity relationship of singleion-conducting block copolymer electrolytes for lithium batteries[J]. ACS Macro Lett., 2014,3(6):510-514. doi: 10.1021/mz5001948

    20. [20]

      Shi J., Vincent C. A.. The effect of molecular weight on cation mobility in polymer electrolytes[J]. Solid State Ionics, 1993,60(1-3):11-17. doi: 10.1016/0167-2738(93)90268-8

    21. [21]

      Money B. K., Hariharan K., Swenson J.. Glass transition and relaxation processes of nanocomposite polymer electrolytes[J]. J. Phys. Chem. B, 2012,116(26):7762-7770. doi: 10.1021/jp3036499

    22. [22]

      Xia Y., Olsen B. D., Kornfield J. A., Grubbs R. H.. Efficient synthesis of narrowly dispersed brush copolymers and study of their assemblies:the importance of side chain arrangement[J]. J. Am. Chem. Soc., 2009,131(51):18525-18532. doi: 10.1021/ja908379q

    23. [23]

      Ruzette A. V. G., Soo P. P., Sadoway D. R., Mayes A. M.. Melt-formable block copolymer electrolytes for lithium rechargeable batteries[J]. J. Electrochem. Soc., 2001,148(6):A537-A543. doi: 10.1149/1.1368097

    24. [24]

      Gao L. C., Zhang C. L., Liu X., Fan X. H., Wu Y. X., Chen X. F., Shen Z., Zhou Q. F.. ABA type liquid crystalline triblock copolymers by combination of living cationic polymerizaition and ATRP:synthesis and self-assembly[J]. Soft Matter, 2008,4(6):1230-1236. doi: 10.1039/b718558h

    25. [25]

      Xue B., Gao L., Jiang H., Geng Z., Guan S., Wang Y., Liu Z., Jiang L.. High flux CO2 transporting nanochannel fabricated by self-assembly of linear-brush block copolymer[J]. J. Mater. Chem. A, 2013,1(28):8097-8100. doi: 10.1039/c3ta11572k

    26. [26]

      Chung G., Kornfield J., Smith S.. Component dynamics miscible polymer blends:a two-dimensional deuteron NMR investigation[J]. Macromolecules, 1994,27(4):964-973. doi: 10.1021/ma00082a013

    27. [27]

      Chung G. C., Kornfield J., Smith S.. Compositional dependence of segmental dynamics in a miscible polymer blend[J]. Macromolecules, 1994,27(20):5729-5741. doi: 10.1021/ma00098a030

    28. [28]

      Lodge T. P., McLeish T. C.. Self-concentrations and effective glass transition temperatures in polymer blends[J]. Macromolecules, 2000,33(14):5278-5284. doi: 10.1021/ma9921706

    29. [29]

      Kumar S. K., Colby R. H., Anastasiadis S. H., Fytas G.. Concentration fluctuation induced dynamic heterogeneities in polymer blends[J]. J. Chem. Phys., 1996,105(9):3777-3788. doi: 10.1063/1.472198

    30. [30]

      Nakamura I., Balsara N. P., Wang Z. G.. First-order disordered-to-lamellar phase transition in lithium salt-doped block copolymers[J]. ACS Macro Lett., 2013,2(6):478-481. doi: 10.1021/mz4001404

    31. [31]

      Nakamura I., Balsara N., Wang Z. G.. Thermodynamics of ion-containing polymer blends and block copolymers[J]. Phys. Rev. Lett., 2011,107(19)198301. doi: 10.1103/PhysRevLett.107.198301

    32. [32]

      Nakamura I., Wang Z. G.. Salt-doped block copolymers:ion distribution, domain spacing and effective parameter[J]. Soft Matter, 2012,8(36):9356-9367. doi: 10.1039/c2sm25606a

    33. [33]

      Ren C. L., Nakamura I., Wang Z. G.. Effects of ion-induced cross-linking on the phase behavior in salt-doped polymer blends[J]. Macromolecules, 2016,49(1):425-431. doi: 10.1021/acs.macromol.5b02229

    34. [34]

      Vachon C., Labreche C., Vallee A., Besner S., Dumont M., Prud'Homme J.. Microphase separation and conductivity behavior of poly(propylene oxide)-lithium salt electrolytes[J]. Macromolecules, 1995,28(16):5585-5594. doi: 10.1021/ma00120a025

    35. [35]

      Lemaı F., Prud'homme J.. Ion-ion, short-range interactions in PEO-LiX rubbery electrolytes containing LiSCN, LiN(CF3SO2)2 or Li[CF3SO2N(CH2)3OCH3] as deduced from studies performed on PEO-LiX-KX ternary systems[J]. Electrochim. Acta, 2001,46(9):1359-1367. doi: 10.1016/S0013-4686(00)00720-9

    36. [36]

      Fetters, L. ; Lohse, D. ; Colby, R. in "Physical Properties of Polymers Handbook", Springer, 2007, p. 447-454.

    37. [37]

      Staunton E., Christie A. M., Martin-Litas I., Andreev Y. G., Slawin A. M., Bruce P. G.. Structure of the poly (ethylene oxide)-zinc chloride complex[J]. Angew. Chem. Int. Ed., 2004,116(16):2155-2157. doi: 10.1002/(ISSN)1521-3757

    38. [38]

      Matsumiya Y., Balsara N. P., Kerr J. B., Inoue T., Watanabe H.. In situ dielectric characterization of poly(ethylene oxide) melts containing lithium perchlorate under steady shear flow[J]. Macromolecules, 2004,37(2):544-553. doi: 10.1021/ma0304473

    39. [39]

      Goldansaz H., Auhl D., Goderis B., Voleppe Q., Fustin C. A., Gohy J. F., Bailly C., van Ruymbeke E.. Transient metallosupramolecular networks built from entangled melts of poly(ethylene oxide)[J]. Macromolecules, 2015,48(11):3746-3755. doi: 10.1021/acs.macromol.5b00703

    40. [40]

      Winter H.. Can the gel point of a cross-linking polymer be detected by the G'-G" crossover? Polym[J]. Eng. Sci., 1987,27(22):1698-1702.  

    41. [41]

      Zardalidis G., Ioannou E., Pispas S., Floudas G.. Relating structure, viscoelasticity, and local mobility to conductivity in PEO/LiTf electrolytes[J]. Macromolecules, 2013,46(7):2705-2714. doi: 10.1021/ma400266w

  • 加载中
    1. [1]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    2. [2]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    3. [3]

      Ruotong WeiAokun LiuJian KuangZhiwen WangLu YuChanglin Tian . Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy. Chinese Chemical Letters, 2025, 36(4): 110029-. doi: 10.1016/j.cclet.2024.110029

    4. [4]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    5. [5]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    6. [6]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    7. [7]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    8. [8]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    9. [9]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    10. [10]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    11. [11]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    12. [12]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    13. [13]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    14. [14]

      Mengjia Luo Yi Qiu Zhengyang Zhou . Exploring temperature-driven phase dynamics of phosphate: The periodic to incommensurately modulated long-range ordered phase transition in CsCdPO4. Chinese Journal of Structural Chemistry, 2025, 44(1): 100446-100446. doi: 10.1016/j.cjsc.2024.100446

    15. [15]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    16. [16]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    17. [17]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    18. [18]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    19. [19]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

    20. [20]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

Metrics
  • PDF Downloads(0)
  • Abstract views(845)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return