Molecular Dynamics Simulation of the Glass Transition Temperature of Fullerene Filled Cis-1, 4-polybutadiene Nanocomposites
- Corresponding author: Jun Liu, lj200321039@163.com Zhao Wang, wangzhaoqd@163.com
Citation:
Yang-Yang Gao, Feng-Yan Hu, Jun Liu, Zhao Wang. Molecular Dynamics Simulation of the Glass Transition Temperature of Fullerene Filled Cis-1, 4-polybutadiene Nanocomposites[J]. Chinese Journal of Polymer Science,
;2018, 36(1): 119-128.
doi:
10.1007/s10118-018-2015-0
Nielsen, L. E. ; Landel, R. F. ; Marcel Dekker edn., "Mechanical properties of polymers and composites", Marcel Dekker Inc., New York, 1994, p. 377.
Biroli G., Garrahan J. P.. Perspective:The glass transition[J]. J. Chem. Phys., 2013,138(12). doi: 10.1063/1.4795539
Adam G., Gibbs J. H.. On the temperature dependence of cooperative relaxation properties in glass-forming liquids[J]. J. Chem. Phys., 1965,43(1):139-146. doi: 10.1063/1.1696442
Debenedetti P. G., Stillinger F. H.. Supercooled liquids and the glass transition[J]. Nature, 2001,410(6825):259-267. doi: 10.1038/35065704
Ediger M. D., Forrest J. A.. Dynamics near free surfaces and the glass transition in thin polymer films:a view to the future[J]. Macromolecules, 2014,47(2):471-478. doi: 10.1021/ma4017696
Inoue R., Kawashima K., Matsui K., Kanaya T., Nishida K., Matsuba G., Hino M.. Distributions of glass-transition temperature and thermal expansivity in multilayered polystyrene thin films studied by neutron reflectivity[J]. Phys. Rev. E, 2011,83(2). doi: 10.1103/PhysRevE.83.021801
Efremov M. Y., Olson E. A., Zhang M., Zhang Z., Allen L. H.. Glass transition in ultrathin polymer films:calorimetric study[J]. Phys. Rev. Lett., 2003,91(8). doi: 10.1103/PhysRevLett.91.085703
Corezzi S., Fioretto D., Rolla P.. Bond-controlled configurational entropy reduction in chemical vitrification[J]. Nature, 2002,420(6916):653-656. doi: 10.1038/nature01261
Angell C. A., Ngai K. L., McKenna G. B., McMillan P. F., Martin S. W.. Relaxation in glassforming liquids and amorphous solids[J]. J. Appl. Phys., 2000,88(6):3113-3157. doi: 10.1063/1.1286035
Askar S., Li L., Torkelson J. M.. Polystyrene-grafted silica nanoparticles:investigating the molecular weight dependence of glass transition and fragility behavior[J]. Macromolecules, 2017,50(4):1589-1598. doi: 10.1021/acs.macromol.7b00079
Oh H., Green P. F.. Polymer chain dynamics and glass transition in athermal polymer/nanoparticle mixtures[J]. Nat. Mater., 2009,8(2):139-143. doi: 10.1038/nmat2354
Natarajan B., Li Y., Deng H., Brinson L. C., Schadler L. S.. Effect of interfacial energetics on dispersion and glass transition temperature in polymer nanocomposites[J]. Macromolecules, 2013,46(7):2833-2841. doi: 10.1021/ma302281b
Chantawansri T. L., Yeh I. C., Hsieh A. J.. Investigating the glass transition temperature at the atom-level in select model polyamides:a molecular dynamics study[J]. Polymer, 2015,81:50-61. doi: 10.1016/j.polymer.2015.09.069
Shavit A., Riggleman R. A.. Influence of backbone rigidity on nanoscale confinement effects in model glass-forming polymers[J]. Macromolecules, 2013,46(12):5044-5052. doi: 10.1021/ma400210w
Khabaz F., Khare R.. Glass transition and molecular mobility in styrene-butadiene rubber modified asphalt[J]. J. Phys. Chem. B, 2015,119(44):14261-14269. doi: 10.1021/acs.jpcb.5b06191
Soldera A., Metatla N.. Glass transition of polymers:atomistic simulation versus experiments[J]. Phys. Rev. E, 2006,74(6). doi: 10.1103/PhysRevE.74.061803
Harmandaris V. A., Floudas G., Kremer K.. Temperature and pressure dependence of polystyrene dynamics through molecular dynamics simulations and experiments[J]. Macromolecules, 2011,44(2):393-402. doi: 10.1021/ma102179b
Wu R., Zhang X., Ji Q., Kong B., Yang X.. Conformational transition behavior of amorphous polyethylene across the glass transition temperature[J]. J. Phys. Chem. B, 2009,113(27):9077-9083. doi: 10.1021/jp8110919
Zhang J., Liang Y., Yan J., Lou J.. Study of the molecular weight dependence of glass transition temperature for amorphous poly(L-lactide) by molecular dynamics simulation[J]. Polymer, 2007,48(16):4900-4905. doi: 10.1016/j.polymer.2007.06.030
Li S., Xie S., Li Y., Qian H., Lu Z.. Influence of molecular-weight polydispersity on the glass transition of polymers[J]. Phys. Rev. E, 2016,93(1). doi: 10.1103/PhysRevE.93.012613
Yu X., Wu R.; Yang X.. Molecular dynamics study on glass transitions in atactic-polypropylene bulk and freestanding thin films[J]. J. Phys. Chem. B, 2010,114(15):4955-4963. doi: 10.1021/jp910245k
Kim S., Torkelson J. M.. Distribution of glass transition temperatures in free-standing, nanoconfined polystyrene films:a test of de Gennes' sliding motion mechanism[J]. Macromolecules, 2011,44(11):4546-4553. doi: 10.1021/ma200617j
Fakhraai Z., Forrest J. A.. Probing slow dynamics in supported thin polymer films[J]. Phys. Rev. Lett., 2005,95(2). doi: 10.1103/PhysRevLett.95.025701
White R. P., Price C. C., Lipson J. E. G.. Effect of interfaces on the glass transition of supported and freestanding polymer thin films[J]. Macromolecules, 2015,48(12):4132-4141. doi: 10.1021/acs.macromol.5b00510
Fryer D. S., Peters R. D., Kim E. J., Tomaszewski J. E., de Pablo J. J., Nealey P. F., White C. C., Wu W. L.. Dependence of the glass transition temperature of polymer films on interfacial energy and thickness[J]. Macromolecules, 2001,34(16):5627-5634. doi: 10.1021/ma001932q
Forrest J. A., Dalnoki-Veress K., Dutcher J. R.. Interface and chain confinement effects on the glass transition temperature of thin polymer films[J]. Phys. Rev. E, 1997,56(5):5705-5716. doi: 10.1103/PhysRevE.56.5705
Xie S., Qian H., Lu Z.. Hard and soft confinement effects on the glass transition of polymers confined to nanopores[J]. Polymer, 2015,56:545-552. doi: 10.1016/j.polymer.2014.11.049
Wang Z., Liu J., Wu S., Wang W., Zhang L.. Novel percolation phenomena and mechanism of strengthening elastomers by nanofillers[J]. Phys. Chem. Chem. Phys., 2010,12(12):3014-3030. doi: 10.1039/b919789c
Balazs A. C., Emrick T., Russell T. P.. Nanoparticle polymer composites:where two small worlds meet[J]. Science, 2006,314(5802):1107-1110. doi: 10.1126/science.1130557
Gao Y., Müller-Plathe F.. Increasing the thermal conductivity of graphene-polyamide-6, 6 nanocomposites by surface-grafted polymer chains:calculation with molecular dynamics and effective-medium approximation[J]. J. Phys. Chem. B, 2016,120(7):1336-1346. doi: 10.1021/acs.jpcb.5b08398
Gao Y., Cao D., Wu Y., Liu J., Zhang L.. Controlling the conductive network formation of polymer nanocomposites filled with nanorods through the electric field[J]. Polymer, 2016,101:395-405. doi: 10.1016/j.polymer.2016.08.103
Gao Y., Wu Y., Liu J., Zhang L.. Controlling the electrical conductive network formation of polymer nanocomposites via polymer functionalization[J]. Soft Matter, 2016,12(48):9738-9748. doi: 10.1039/C6SM02201D
Gao Y., Liu J., Shen J., Zhang L., Guo Z., Cao D.. Uniaxial deformation of nanorod filled polymer nanocomposites:a coarse-grained molecular dynamics simulation[J]. Phys. Chem. Chem. Phys., 2014,16(30):16039-16048. doi: 10.1039/C4CP01555J
Cheng S., Xie S., Carrillo J. M. Y., Carroll B., Martin H., Cao P. F., Dadmun M. D., Sumpter B. G., Novikov V. N., Schweizer K. S., Sokolov A. P.. Big effect of small nanoparticles:a shift in paradigm for polymer nanocomposites[J]. ACS Nano, 2017,11(1):752-759. doi: 10.1021/acsnano.6b07172
Wang Z., Lv Q., Chen S., Li C., Sun S., Hu S.. Effect of interfacial bonding on interphase properties in SiO2/epoxy nanocomposite:a molecular dynamics simulation study[J]. ACS Appl. Mater. Interfaces, 2016,8(11):7499-7508. doi: 10.1021/acsami.5b11810
Starr F. W., Douglas J. F., Meng D., Kumar S. K.. Bound layers "cloak" nanoparticles in strongly interacting polymer nanocomposites[J]. ACS Nano, 2016,10(12):10960-10965. doi: 10.1021/acsnano.6b05683
Khare K. S., Khabaz F., Khare R.. Effect of carbon nanotube functionalization on mechanical and thermal properties of cross-linked epoxy-carbon nanotube nanocomposites:role of strengthening the interfacial interactions[J]. ACS Appl. Mater. Interfaces, 2014,6(9):6098-6110. doi: 10.1021/am405317x
Khare K. S., Khare R.. Effect of carbon nanotube dispersion on glass transition in cross-linked epoxy-carbon nanotube nanocomposites:role of interfacial interactions[J]. J. Phys. Chem. B, 2013,117(24):7444-7454. doi: 10.1021/jp401614p
Smith G. D., Bedrov D., Borodin O.. Structural Relaxation and dynamic heterogeneity in a polymer melt at attractive surfaces[J]. Phys. Rev. Lett., 2003,90(22). doi: 10.1103/PhysRevLett.90.226103
Torres J. A., Nealey P. F., de Pablo J. J.. Molecular simulation of ultrathin polymeric films near the glass transition[J]. Phys. Rev. Lett., 2000,85(15):3221-3224. doi: 10.1103/PhysRevLett.85.3221
Gao Y., Liu J., Zhang L., Cao D.. Existence of a glassy layer in the polymer-nanosheet interface:evidence from molecular dynamics[J]. Macromol. Theor. Simul., 2014,23(1):36-48. doi: 10.1002/mats.v23.1
Karatasos K., Kritikos G.. Characterization of a graphene oxide/poly(acrylic acid) nanocomposite by means of molecular dynamics simulations[J]. RSC Adv., 2016,6(111):109267-109277. doi: 10.1039/C6RA22951D
Pazmino Betancourt B. A., Douglas J. F., Starr F. W.. Fragility and cooperative motion in a glass-forming polymer-nanoparticle composite[J]. Soft Matter, 2013,9(1):241-254. doi: 10.1039/C2SM26800K
Chai Y., Salez T., McGraw J. D., Benzaquen M., Dalnoki-Veress K., Raphaël E., Forrest J. A.. A direct quantitative measure of surface mobility in a glassy polymer[J]. Science, 2014,343(6174):994-999. doi: 10.1126/science.1244845
Yang Z., Fujii Y., Lee F. K., Lam C. H., Tsui O. K. C.. Glass transition dynamics and surface layer mobility in unentangled polystyrene films[J]. Science, 2010,328(5986):1676-1679. doi: 10.1126/science.1184394
Fakhraai Z., Forrest J. A.. Measuring the surface dynamics of glassy polymers[J]. Science, 2008,319(5863):600-604. doi: 10.1126/science.1151205
Long D., Lequeux F.. Heterogeneous dynamics at the glass transition in van der Waals liquids, in the bulk and in thin films[J]. Eur. Phys. J. E:Soft Matter Biol. Phys., 2001,4(3):371-387. doi: 10.1007/s101890170120
Tsolou G., Mavrantzas V. G., Theodorou D. N.. Detailed atomistic molecular dynamics simulation of cis-1, 4-poly(butadiene)[J]. Macromolecules, 2005,38(4):1478-1492. doi: 10.1021/ma0491210
Binder K., Baschnagel J., Paul W.. Glass transition of polymer melts:test of theoretical concepts by computer simulation[J]. Prog. Polym. Sci., 2003,28(1):115-172. doi: 10.1016/S0079-6700(02)00030-8
Plimpton S.. Fast parallel algorithms for short-range molecular dynamics[J]. J. Comput. Phys., 1995,117(1):1-19. doi: 10.1006/jcph.1995.1039
Gao Y., Wu Y., Liu J., Zhang L.. Effect of chain structure on the glass transition temperature and viscoelastic property of cis-1, 4-polybutadiene via molecular simulation[J]. J. Polym. Sci., Part B:Polym. Phys., 2017,55(13):1005-1016. doi: 10.1002/polb.v55.13
Wu C.. Cooperative behavior of poly(vinyl alcohol) and water as revealed by molecular dynamics simulations[J]. Polymer, 2010,51(19):4452-4460. doi: 10.1016/j.polymer.2010.07.019
Luo Z., Jiang J.. Molecular dynamics and dissipative particle dynamics simulations for the miscibility of poly(ethylene oxide)/poly(vinyl chloride) blends[J]. Polymer, 2010,51(1):291-299. doi: 10.1016/j.polymer.2009.11.024
Das S. P.. Mode-coupling theory and the glass transition in supercooled liquids[J]. Rev. Mod. Phys., 2004,76(3):785-851. doi: 10.1103/RevModPhys.76.785
Bennemann C., Baschnagel J., Paul W.. Molecular-dynamics simulation of a glassy polymer melt:Incoherent scattering function[J]. Eur. Phys. J. B, 1999,10(2):323-334. doi: 10.1007/s100510050861
Bennemann C., Paul W., Binder K., Dünweg B.. Molecular-dynamics simulations of the thermal glass transition in polymer melts:α-relaxation behavior[J]. Phys. Rev. E, 1998,57(1):843-851. doi: 10.1103/PhysRevE.57.843
Bharadwaj R. K., Boyd R. H.. Conformational dynamics in polyethylene under isochoric conditions:a molecular dynamics simulation study[J]. J. Chem. Phys., 2001,114(11):5061-5068. doi: 10.1063/1.1345878
Boyd R. H., Gee R. H., Han J., Jin Y.. Conformational dynamics in bulk polyethylene:a molecular dynamics simulation study[J]. J. Chem. Phys., 1994,101(1):788-797. doi: 10.1063/1.468134
Ben O. S., Dimitrios V.. Non-equilibrium in adsorbed polymer layers[J]. J. Phys.:Condens. Matter, 2005,17(2):R63-R99. doi: 10.1088/0953-8984/17/2/R01
Smith G. D., Borodin O., Bedrov D., Paul W., Qiu X., Ediger M. D.. 13C-NMR spin-lattice relaxation and conformational dynamics in a 1, 4-polybutadiene melt[J]. Macromolecules, 2001,34(15):5192-5199. doi: 10.1021/ma002206q
Trohalaki. S. ; Kloczkowski, A. ; Mark, J. E. ; Rigby, D. ; Roe, R. J., "Computer simulation of polymers", Prentice Hall, Englewood Cliffs, New York, 1991, p. 220.
Liang T., Yang Y., Guo D., Yang X.. Conformational transition behavior around glass transition temperature[J]. J. Chem. Phys., 2000,112(4):2016-2020. doi: 10.1063/1.480761
Wu R., Kong B., Yang X.. Conformational transition characterization of glass transition behavior of polymers[J]. Polymer, 2009,50(14):3396-3402. doi: 10.1016/j.polymer.2009.05.013
Lin P. H., Khare R.. Local chain dynamics and dynamic heterogeneity in cross-linked epoxy in the vicinity of glass transition[J]. Macromolecules, 2010,43(15):6505-6510. doi: 10.1021/ma100752c
Polizos G., Tuncer E., Agapov A. L., Stevens D., Sokolov A. P., Kidder M. K., Jacobs J. D., Koerner H., Vaia R. A., More K. L., Sauers I.. Effect of polymer-nanoparticle interactions on the glass transition dynamics and the conductivity mechanism in polyurethane titanium dioxide nanocomposites[J]. Polymer, 2012,53(2):595-603. doi: 10.1016/j.polymer.2011.11.050
Paul W.. Determining the glass transition in polymer melts[J]. Rev. Comput. Chem., 2007,25:1-66.
Sanz A., Wong H. C., Nedoma A. J., Douglas J. F., Cabral J. T.. Influence of C60 fullerenes on the glass formation of polystyrene[J]. Polymer, 2015,68:47-56. doi: 10.1016/j.polymer.2015.05.001
Rittigstein P., Torkelson J. M.. Polymer-nanoparticle interfacial interactions in polymer nanocomposites:confinement effects on glass transition temperature and suppression of physical aging[J]. J. Polym. Sci., Part B:Polym. Phys., 2006,44(20):2935-2943. doi: 10.1002/(ISSN)1099-0488
Lu H., Nutt S.. Restricted relaxation in polymer nanocomposites near the glass transition[J]. Macromolecules, 2003,36(11):4010-4016. doi: 10.1021/ma034049b
Ash B. J., Schadler L. S., Siegel R. W.. Glass transition behavior of alumina/polymethylmethacrylate nanocomposites[J]. Mater. Lett., 2002,55(1):83-87.
Parker W. O., Ferrando A., Ferri D., Canepari V.. Cross-link density of a dispersed rubber measured by 129xe chemical shift[J]. Macromolecules, 2007,40(16):5787-5790. doi: 10.1021/ma070793a
Zorn R., Mopsik F. I., McKenna G. B., Willner L, Richter D.. Dynamics of polybutadienes with different microstructures.2. Dielectric response and comparisons with rheological behavior[J]. J. Chem. Phys., 1997,107(9):3645-3655. doi: 10.1063/1.474722
Pavlov A. S., Khalatur P. G.. Fully atomistic molecular dynamics simulation of nanosilica-filled crosslinked polybutadiene[J]. Chem. Phys. Lett., 2016,653:90-95. doi: 10.1016/j.cplett.2016.04.061
Kang Wei , Jiayu Li , Wen Zhang , Bing Yuan , Ming-De Li , Pingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055
Nianqiang Jiang , Yiqiang Ou , Yanpeng Zhu , Dingyong Zhong , Jiaobing Wang . Assembly of fullerenes using a highly preorganized janusarene. Chinese Chemical Letters, 2025, 36(4): 110004-. doi: 10.1016/j.cclet.2024.110004
Zhimin Sun , Xin-Hui Guo , Yue Zhao , Qing-Yu Meng , Li-Juan Xing , He-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162
Mengjia Luo , Yi Qiu , Zhengyang Zhou . Exploring temperature-driven phase dynamics of phosphate: The periodic to incommensurately modulated long-range ordered phase transition in CsCdPO4. Chinese Journal of Structural Chemistry, 2025, 44(1): 100446-100446. doi: 10.1016/j.cjsc.2024.100446
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
Zhenming Xu , Yibo Wang , Zhenhui Liu , Duo Chen , Mingbo Zheng , Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096
Zhi Zhou , Yu-E Lian , Yuqing Li , Hui Gao , Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104
Ying-Yu Zhang , Jia-Qi Luo , Yan Han , Wan-Ying Zhang , Yi Zhang , Hai-Feng Lu , Da-Wei Fu . Bistable switch molecule DPACdCl4 showing four physical channels and high phase transition temperature. Chinese Chemical Letters, 2025, 36(1): 109530-. doi: 10.1016/j.cclet.2024.109530
Keke Han , Wenjun Rao , Xiuli You , Haina Zhang , Xing Ye , Zhenhong Wei , Hu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4−, ReO4−). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809
Shiyu Hou , Maolin Sun , Liming Cao , Chaoming Liang , Jiaxin Yang , Xinggui Zhou , Jinxing Ye , Ruihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761
Changlin Su , Wensheng Cai , Xueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095
Shunyu Wang , Yanan Zhu , Yang Zhao , Wanli Nie , Hong Meng . Steric effects and electronic manipulation of multiple donors on S0/S1 transition of Dn-A emitters. Chinese Chemical Letters, 2025, 36(4): 110555-. doi: 10.1016/j.cclet.2024.110555
Huan Hu , Ying Zhang , Shi-Shuang Huang , Zhi-Gang Li , Yungui Liu , Rui Feng , Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395
Huimin Gao , Zhuochen Yu , Xuze Zhang , Xiangkun Yu , Jiyuan Xing , Youliang Zhu , Hu-Jun Qian , Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266
Hualei Xu , Manman Han , Haiqiang Liu , Liang Qin , Lulu Chen , Hao Hu , Ran Wu , Chenyu Yang , Hua Guo , Jinrong Li , Jinxiang Fu , Qichen Hao , Yijun Zhou , Jinchao Feng , Xiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095
Yan Cheng , Hua-Peng Ruan , Yan Peng , Longhe Li , Zhenqiang Xie , Lang Liu , Shiyong Zhang , Hengyun Ye , Zhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554
Chenghao Ge , Peng Wang , Pei Yuan , Tai Wu , Rongjun Zhao , Rong Huang , Lin Xie , Yong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352
Fang-Yuan Chen , Wen-Chao Geng , Kang Cai , Dong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161
Sanmei Wang , Yong Zhou , Hengxin Fang , Chunyang Nie , Chang Q Sun , Biao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476
Rongjun Zhao , Tai Wu , Yong Hua , Yude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587