Citation: Yang-Yang Gao, Feng-Yan Hu, Jun Liu, Zhao Wang. Molecular Dynamics Simulation of the Glass Transition Temperature of Fullerene Filled Cis-1, 4-polybutadiene Nanocomposites[J]. Chinese Journal of Polymer Science, ;2018, 36(1): 119-128. doi: 10.1007/s10118-018-2015-0 shu

Molecular Dynamics Simulation of the Glass Transition Temperature of Fullerene Filled Cis-1, 4-polybutadiene Nanocomposites

  • In this work, the effect of the fullerene (C60) weight fraction and PB-C60 interaction on the glass transition temperature (Tg) of polymer chains has been systemically investigated by adopting the united atom model of cis-1, 4-poly(butadiene) (cis-PB). Various chain dynamics properties, such as atom translational mobility, bond/segment reorientation dynamics, torsional dynamics, conformational transition rate and dynamic heterogeneity of the cis-PB chains, are analyzed in detail. It is found that Tg could be affected by the C60 weight fraction due to its inhibition effect on the mobility of the cis-PB chains. However, Tg is different, which depends on different dynamics scales. Among the chain dynamics properties, Tg is the lowest from atom translational mobility, while it is the highest from the dynamic heterogeneity. In addition, Tg can be more clearly distinguished from the dynamic heterogeneity; however, the conformational transition rate seems to be not very sensitive to the C60 weight fraction compared with others. For pure cis-PB chains, Tg and the activation energy in this work can be compared with those of other polymers. In addition, the temperature dependence of the dynamic properties has different Arrhenius behaviors above and below Tg. The activation energy below Tg is lower than that above Tg. This work can help to understand the effect of the C60 on the dynamic properties and glass transition temperature of the cis-PB chains from different scales.
  • 加载中
    1. [1]

      Nielsen, L. E. ; Landel, R. F. ; Marcel Dekker edn., "Mechanical properties of polymers and composites", Marcel Dekker Inc., New York, 1994, p. 377.

    2. [2]

      Biroli G., Garrahan J. P.. Perspective:The glass transition[J]. J. Chem. Phys., 2013,138(12). doi: 10.1063/1.4795539

    3. [3]

      Adam G., Gibbs J. H.. On the temperature dependence of cooperative relaxation properties in glass-forming liquids[J]. J. Chem. Phys., 1965,43(1):139-146. doi: 10.1063/1.1696442

    4. [4]

      Debenedetti P. G., Stillinger F. H.. Supercooled liquids and the glass transition[J]. Nature, 2001,410(6825):259-267. doi: 10.1038/35065704

    5. [5]

      Ediger M. D., Forrest J. A.. Dynamics near free surfaces and the glass transition in thin polymer films:a view to the future[J]. Macromolecules, 2014,47(2):471-478. doi: 10.1021/ma4017696

    6. [6]

      Inoue R., Kawashima K., Matsui K., Kanaya T., Nishida K., Matsuba G., Hino M.. Distributions of glass-transition temperature and thermal expansivity in multilayered polystyrene thin films studied by neutron reflectivity[J]. Phys. Rev. E, 2011,83(2). doi: 10.1103/PhysRevE.83.021801

    7. [7]

      Efremov M. Y., Olson E. A., Zhang M., Zhang Z., Allen L. H.. Glass transition in ultrathin polymer films:calorimetric study[J]. Phys. Rev. Lett., 2003,91(8). doi: 10.1103/PhysRevLett.91.085703

    8. [8]

      Corezzi S., Fioretto D., Rolla P.. Bond-controlled configurational entropy reduction in chemical vitrification[J]. Nature, 2002,420(6916):653-656. doi: 10.1038/nature01261

    9. [9]

      Angell C. A., Ngai K. L., McKenna G. B., McMillan P. F., Martin S. W.. Relaxation in glassforming liquids and amorphous solids[J]. J. Appl. Phys., 2000,88(6):3113-3157. doi: 10.1063/1.1286035

    10. [10]

      Askar S., Li L., Torkelson J. M.. Polystyrene-grafted silica nanoparticles:investigating the molecular weight dependence of glass transition and fragility behavior[J]. Macromolecules, 2017,50(4):1589-1598. doi: 10.1021/acs.macromol.7b00079

    11. [11]

      Oh H., Green P. F.. Polymer chain dynamics and glass transition in athermal polymer/nanoparticle mixtures[J]. Nat. Mater., 2009,8(2):139-143. doi: 10.1038/nmat2354

    12. [12]

      Natarajan B., Li Y., Deng H., Brinson L. C., Schadler L. S.. Effect of interfacial energetics on dispersion and glass transition temperature in polymer nanocomposites[J]. Macromolecules, 2013,46(7):2833-2841. doi: 10.1021/ma302281b

    13. [13]

      Chantawansri T. L., Yeh I. C., Hsieh A. J.. Investigating the glass transition temperature at the atom-level in select model polyamides:a molecular dynamics study[J]. Polymer, 2015,81:50-61. doi: 10.1016/j.polymer.2015.09.069

    14. [14]

      Shavit A., Riggleman R. A.. Influence of backbone rigidity on nanoscale confinement effects in model glass-forming polymers[J]. Macromolecules, 2013,46(12):5044-5052. doi: 10.1021/ma400210w

    15. [15]

      Khabaz F., Khare R.. Glass transition and molecular mobility in styrene-butadiene rubber modified asphalt[J]. J. Phys. Chem. B, 2015,119(44):14261-14269. doi: 10.1021/acs.jpcb.5b06191

    16. [16]

      Soldera A., Metatla N.. Glass transition of polymers:atomistic simulation versus experiments[J]. Phys. Rev. E, 2006,74(6). doi: 10.1103/PhysRevE.74.061803

    17. [17]

      Harmandaris V. A., Floudas G., Kremer K.. Temperature and pressure dependence of polystyrene dynamics through molecular dynamics simulations and experiments[J]. Macromolecules, 2011,44(2):393-402. doi: 10.1021/ma102179b

    18. [18]

      Wu R., Zhang X., Ji Q., Kong B., Yang X.. Conformational transition behavior of amorphous polyethylene across the glass transition temperature[J]. J. Phys. Chem. B, 2009,113(27):9077-9083. doi: 10.1021/jp8110919

    19. [19]

      Zhang J., Liang Y., Yan J., Lou J.. Study of the molecular weight dependence of glass transition temperature for amorphous poly(L-lactide) by molecular dynamics simulation[J]. Polymer, 2007,48(16):4900-4905. doi: 10.1016/j.polymer.2007.06.030

    20. [20]

      Li S., Xie S., Li Y., Qian H., Lu Z.. Influence of molecular-weight polydispersity on the glass transition of polymers[J]. Phys. Rev. E, 2016,93(1). doi: 10.1103/PhysRevE.93.012613

    21. [21]

      Yu X., Wu R.; Yang X.. Molecular dynamics study on glass transitions in atactic-polypropylene bulk and freestanding thin films[J]. J. Phys. Chem. B, 2010,114(15):4955-4963. doi: 10.1021/jp910245k

    22. [22]

      Kim S., Torkelson J. M.. Distribution of glass transition temperatures in free-standing, nanoconfined polystyrene films:a test of de Gennes' sliding motion mechanism[J]. Macromolecules, 2011,44(11):4546-4553. doi: 10.1021/ma200617j

    23. [23]

      Fakhraai Z., Forrest J. A.. Probing slow dynamics in supported thin polymer films[J]. Phys. Rev. Lett., 2005,95(2). doi: 10.1103/PhysRevLett.95.025701

    24. [24]

      White R. P., Price C. C., Lipson J. E. G.. Effect of interfaces on the glass transition of supported and freestanding polymer thin films[J]. Macromolecules, 2015,48(12):4132-4141. doi: 10.1021/acs.macromol.5b00510

    25. [25]

      Fryer D. S., Peters R. D., Kim E. J., Tomaszewski J. E., de Pablo J. J., Nealey P. F., White C. C., Wu W. L.. Dependence of the glass transition temperature of polymer films on interfacial energy and thickness[J]. Macromolecules, 2001,34(16):5627-5634. doi: 10.1021/ma001932q

    26. [26]

      Forrest J. A., Dalnoki-Veress K., Dutcher J. R.. Interface and chain confinement effects on the glass transition temperature of thin polymer films[J]. Phys. Rev. E, 1997,56(5):5705-5716. doi: 10.1103/PhysRevE.56.5705

    27. [27]

      Xie S., Qian H., Lu Z.. Hard and soft confinement effects on the glass transition of polymers confined to nanopores[J]. Polymer, 2015,56:545-552. doi: 10.1016/j.polymer.2014.11.049

    28. [28]

      Wang Z., Liu J., Wu S., Wang W., Zhang L.. Novel percolation phenomena and mechanism of strengthening elastomers by nanofillers[J]. Phys. Chem. Chem. Phys., 2010,12(12):3014-3030. doi: 10.1039/b919789c

    29. [29]

      Balazs A. C., Emrick T., Russell T. P.. Nanoparticle polymer composites:where two small worlds meet[J]. Science, 2006,314(5802):1107-1110. doi: 10.1126/science.1130557

    30. [30]

      Gao Y., Müller-Plathe F.. Increasing the thermal conductivity of graphene-polyamide-6, 6 nanocomposites by surface-grafted polymer chains:calculation with molecular dynamics and effective-medium approximation[J]. J. Phys. Chem. B, 2016,120(7):1336-1346. doi: 10.1021/acs.jpcb.5b08398

    31. [31]

      Gao Y., Cao D., Wu Y., Liu J., Zhang L.. Controlling the conductive network formation of polymer nanocomposites filled with nanorods through the electric field[J]. Polymer, 2016,101:395-405. doi: 10.1016/j.polymer.2016.08.103

    32. [32]

      Gao Y., Wu Y., Liu J., Zhang L.. Controlling the electrical conductive network formation of polymer nanocomposites via polymer functionalization[J]. Soft Matter, 2016,12(48):9738-9748. doi: 10.1039/C6SM02201D

    33. [33]

      Gao Y., Liu J., Shen J., Zhang L., Guo Z., Cao D.. Uniaxial deformation of nanorod filled polymer nanocomposites:a coarse-grained molecular dynamics simulation[J]. Phys. Chem. Chem. Phys., 2014,16(30):16039-16048. doi: 10.1039/C4CP01555J

    34. [34]

      Cheng S., Xie S., Carrillo J. M. Y., Carroll B., Martin H., Cao P. F., Dadmun M. D., Sumpter B. G., Novikov V. N., Schweizer K. S., Sokolov A. P.. Big effect of small nanoparticles:a shift in paradigm for polymer nanocomposites[J]. ACS Nano, 2017,11(1):752-759. doi: 10.1021/acsnano.6b07172

    35. [35]

      Wang Z., Lv Q., Chen S., Li C., Sun S., Hu S.. Effect of interfacial bonding on interphase properties in SiO2/epoxy nanocomposite:a molecular dynamics simulation study[J]. ACS Appl. Mater. Interfaces, 2016,8(11):7499-7508. doi: 10.1021/acsami.5b11810

    36. [36]

      Starr F. W., Douglas J. F., Meng D., Kumar S. K.. Bound layers "cloak" nanoparticles in strongly interacting polymer nanocomposites[J]. ACS Nano, 2016,10(12):10960-10965. doi: 10.1021/acsnano.6b05683

    37. [37]

      Khare K. S., Khabaz F., Khare R.. Effect of carbon nanotube functionalization on mechanical and thermal properties of cross-linked epoxy-carbon nanotube nanocomposites:role of strengthening the interfacial interactions[J]. ACS Appl. Mater. Interfaces, 2014,6(9):6098-6110. doi: 10.1021/am405317x

    38. [38]

      Khare K. S., Khare R.. Effect of carbon nanotube dispersion on glass transition in cross-linked epoxy-carbon nanotube nanocomposites:role of interfacial interactions[J]. J. Phys. Chem. B, 2013,117(24):7444-7454. doi: 10.1021/jp401614p

    39. [39]

      Smith G. D., Bedrov D., Borodin O.. Structural Relaxation and dynamic heterogeneity in a polymer melt at attractive surfaces[J]. Phys. Rev. Lett., 2003,90(22). doi: 10.1103/PhysRevLett.90.226103

    40. [40]

      Torres J. A., Nealey P. F., de Pablo J. J.. Molecular simulation of ultrathin polymeric films near the glass transition[J]. Phys. Rev. Lett., 2000,85(15):3221-3224. doi: 10.1103/PhysRevLett.85.3221

    41. [41]

      Gao Y., Liu J., Zhang L., Cao D.. Existence of a glassy layer in the polymer-nanosheet interface:evidence from molecular dynamics[J]. Macromol. Theor. Simul., 2014,23(1):36-48. doi: 10.1002/mats.v23.1

    42. [42]

      Karatasos K., Kritikos G.. Characterization of a graphene oxide/poly(acrylic acid) nanocomposite by means of molecular dynamics simulations[J]. RSC Adv., 2016,6(111):109267-109277. doi: 10.1039/C6RA22951D

    43. [43]

      Pazmino Betancourt B. A., Douglas J. F., Starr F. W.. Fragility and cooperative motion in a glass-forming polymer-nanoparticle composite[J]. Soft Matter, 2013,9(1):241-254. doi: 10.1039/C2SM26800K

    44. [44]

      Chai Y., Salez T., McGraw J. D., Benzaquen M., Dalnoki-Veress K., Raphaël E., Forrest J. A.. A direct quantitative measure of surface mobility in a glassy polymer[J]. Science, 2014,343(6174):994-999. doi: 10.1126/science.1244845

    45. [45]

      Yang Z., Fujii Y., Lee F. K., Lam C. H., Tsui O. K. C.. Glass transition dynamics and surface layer mobility in unentangled polystyrene films[J]. Science, 2010,328(5986):1676-1679. doi: 10.1126/science.1184394

    46. [46]

      Fakhraai Z., Forrest J. A.. Measuring the surface dynamics of glassy polymers[J]. Science, 2008,319(5863):600-604. doi: 10.1126/science.1151205

    47. [47]

      Long D., Lequeux F.. Heterogeneous dynamics at the glass transition in van der Waals liquids, in the bulk and in thin films[J]. Eur. Phys. J. E:Soft Matter Biol. Phys., 2001,4(3):371-387. doi: 10.1007/s101890170120

    48. [48]

      Tsolou G., Mavrantzas V. G., Theodorou D. N.. Detailed atomistic molecular dynamics simulation of cis-1, 4-poly(butadiene)[J]. Macromolecules, 2005,38(4):1478-1492. doi: 10.1021/ma0491210

    49. [49]

      Binder K., Baschnagel J., Paul W.. Glass transition of polymer melts:test of theoretical concepts by computer simulation[J]. Prog. Polym. Sci., 2003,28(1):115-172. doi: 10.1016/S0079-6700(02)00030-8

    50. [50]

      Plimpton S.. Fast parallel algorithms for short-range molecular dynamics[J]. J. Comput. Phys., 1995,117(1):1-19. doi: 10.1006/jcph.1995.1039

    51. [51]

      Gao Y., Wu Y., Liu J., Zhang L.. Effect of chain structure on the glass transition temperature and viscoelastic property of cis-1, 4-polybutadiene via molecular simulation[J]. J. Polym. Sci., Part B:Polym. Phys., 2017,55(13):1005-1016. doi: 10.1002/polb.v55.13

    52. [52]

      Wu C.. Cooperative behavior of poly(vinyl alcohol) and water as revealed by molecular dynamics simulations[J]. Polymer, 2010,51(19):4452-4460. doi: 10.1016/j.polymer.2010.07.019

    53. [53]

      Luo Z., Jiang J.. Molecular dynamics and dissipative particle dynamics simulations for the miscibility of poly(ethylene oxide)/poly(vinyl chloride) blends[J]. Polymer, 2010,51(1):291-299. doi: 10.1016/j.polymer.2009.11.024

    54. [54]

      Das S. P.. Mode-coupling theory and the glass transition in supercooled liquids[J]. Rev. Mod. Phys., 2004,76(3):785-851. doi: 10.1103/RevModPhys.76.785

    55. [55]

      Bennemann C., Baschnagel J., Paul W.. Molecular-dynamics simulation of a glassy polymer melt:Incoherent scattering function[J]. Eur. Phys. J. B, 1999,10(2):323-334. doi: 10.1007/s100510050861

    56. [56]

      Bennemann C., Paul W., Binder K., Dünweg B.. Molecular-dynamics simulations of the thermal glass transition in polymer melts:α-relaxation behavior[J]. Phys. Rev. E, 1998,57(1):843-851. doi: 10.1103/PhysRevE.57.843

    57. [57]

      Bharadwaj R. K., Boyd R. H.. Conformational dynamics in polyethylene under isochoric conditions:a molecular dynamics simulation study[J]. J. Chem. Phys., 2001,114(11):5061-5068. doi: 10.1063/1.1345878

    58. [58]

      Boyd R. H., Gee R. H., Han J., Jin Y.. Conformational dynamics in bulk polyethylene:a molecular dynamics simulation study[J]. J. Chem. Phys., 1994,101(1):788-797. doi: 10.1063/1.468134

    59. [59]

      Ben O. S., Dimitrios V.. Non-equilibrium in adsorbed polymer layers[J]. J. Phys.:Condens. Matter, 2005,17(2):R63-R99. doi: 10.1088/0953-8984/17/2/R01

    60. [60]

      Smith G. D., Borodin O., Bedrov D., Paul W., Qiu X., Ediger M. D.. 13C-NMR spin-lattice relaxation and conformational dynamics in a 1, 4-polybutadiene melt[J]. Macromolecules, 2001,34(15):5192-5199. doi: 10.1021/ma002206q

    61. [61]

      Trohalaki. S. ; Kloczkowski, A. ; Mark, J. E. ; Rigby, D. ; Roe, R. J., "Computer simulation of polymers", Prentice Hall, Englewood Cliffs, New York, 1991, p. 220.

    62. [62]

      Liang T., Yang Y., Guo D., Yang X.. Conformational transition behavior around glass transition temperature[J]. J. Chem. Phys., 2000,112(4):2016-2020. doi: 10.1063/1.480761

    63. [63]

      Wu R., Kong B., Yang X.. Conformational transition characterization of glass transition behavior of polymers[J]. Polymer, 2009,50(14):3396-3402. doi: 10.1016/j.polymer.2009.05.013

    64. [64]

      Lin P. H., Khare R.. Local chain dynamics and dynamic heterogeneity in cross-linked epoxy in the vicinity of glass transition[J]. Macromolecules, 2010,43(15):6505-6510. doi: 10.1021/ma100752c

    65. [65]

      Polizos G., Tuncer E., Agapov A. L., Stevens D., Sokolov A. P., Kidder M. K., Jacobs J. D., Koerner H., Vaia R. A., More K. L., Sauers I.. Effect of polymer-nanoparticle interactions on the glass transition dynamics and the conductivity mechanism in polyurethane titanium dioxide nanocomposites[J]. Polymer, 2012,53(2):595-603. doi: 10.1016/j.polymer.2011.11.050

    66. [66]

      Paul W.. Determining the glass transition in polymer melts[J]. Rev. Comput. Chem., 2007,25:1-66.  

    67. [67]

      Sanz A., Wong H. C., Nedoma A. J., Douglas J. F., Cabral J. T.. Influence of C60 fullerenes on the glass formation of polystyrene[J]. Polymer, 2015,68:47-56. doi: 10.1016/j.polymer.2015.05.001

    68. [68]

      Rittigstein P., Torkelson J. M.. Polymer-nanoparticle interfacial interactions in polymer nanocomposites:confinement effects on glass transition temperature and suppression of physical aging[J]. J. Polym. Sci., Part B:Polym. Phys., 2006,44(20):2935-2943. doi: 10.1002/(ISSN)1099-0488

    69. [69]

      Lu H., Nutt S.. Restricted relaxation in polymer nanocomposites near the glass transition[J]. Macromolecules, 2003,36(11):4010-4016. doi: 10.1021/ma034049b

    70. [70]

      Ash B. J., Schadler L. S., Siegel R. W.. Glass transition behavior of alumina/polymethylmethacrylate nanocomposites[J]. Mater. Lett., 2002,55(1):83-87.  

    71. [71]

      Parker W. O., Ferrando A., Ferri D., Canepari V.. Cross-link density of a dispersed rubber measured by 129xe chemical shift[J]. Macromolecules, 2007,40(16):5787-5790. doi: 10.1021/ma070793a

    72. [72]

      Zorn R., Mopsik F. I., McKenna G. B., Willner L, Richter D.. Dynamics of polybutadienes with different microstructures.2. Dielectric response and comparisons with rheological behavior[J]. J. Chem. Phys., 1997,107(9):3645-3655. doi: 10.1063/1.474722

    73. [73]

      Pavlov A. S., Khalatur P. G.. Fully atomistic molecular dynamics simulation of nanosilica-filled crosslinked polybutadiene[J]. Chem. Phys. Lett., 2016,653:90-95. doi: 10.1016/j.cplett.2016.04.061

  • 加载中
    1. [1]

      Kang WeiJiayu LiWen ZhangBing YuanMing-De LiPingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055

    2. [2]

      Nianqiang JiangYiqiang OuYanpeng ZhuDingyong ZhongJiaobing Wang . Assembly of fullerenes using a highly preorganized janusarene. Chinese Chemical Letters, 2025, 36(4): 110004-. doi: 10.1016/j.cclet.2024.110004

    3. [3]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    4. [4]

      Mengjia Luo Yi Qiu Zhengyang Zhou . Exploring temperature-driven phase dynamics of phosphate: The periodic to incommensurately modulated long-range ordered phase transition in CsCdPO4. Chinese Journal of Structural Chemistry, 2025, 44(1): 100446-100446. doi: 10.1016/j.cjsc.2024.100446

    5. [5]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    6. [6]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    7. [7]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    8. [8]

      Ying-Yu ZhangJia-Qi LuoYan HanWan-Ying ZhangYi ZhangHai-Feng LuDa-Wei Fu . Bistable switch molecule DPACdCl4 showing four physical channels and high phase transition temperature. Chinese Chemical Letters, 2025, 36(1): 109530-. doi: 10.1016/j.cclet.2024.109530

    9. [9]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    10. [10]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    11. [11]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    12. [12]

      Shunyu WangYanan ZhuYang ZhaoWanli NieHong Meng . Steric effects and electronic manipulation of multiple donors on S0/S1 transition of Dn-A emitters. Chinese Chemical Letters, 2025, 36(4): 110555-. doi: 10.1016/j.cclet.2024.110555

    13. [13]

      Huan Hu Ying Zhang Shi-Shuang Huang Zhi-Gang Li Yungui Liu Rui Feng Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395

    14. [14]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    15. [15]

      Hualei XuManman HanHaiqiang LiuLiang QinLulu ChenHao HuRan WuChenyu YangHua GuoJinrong LiJinxiang FuQichen HaoYijun ZhouJinchao FengXiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095

    16. [16]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    17. [17]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    18. [18]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    19. [19]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    20. [20]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

Metrics
  • PDF Downloads(0)
  • Abstract views(845)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return