Citation: Ning Li, Fang-Lei Zeng, Yu Wang, De-Zhi Qu, Chun Zhang, Juan Li, Jin-Zhao Huo, Yong-Ping Bai. Synthesis and Characterization of Fluorinated Polyurethane Containing Carborane in the Main Chain: Thermal, Mechanical and Chemical Resistance Properties[J]. Chinese Journal of Polymer Science, ;2018, 36(1): 85-97. doi: 10.1007/s10118-018-2014-1 shu

Synthesis and Characterization of Fluorinated Polyurethane Containing Carborane in the Main Chain: Thermal, Mechanical and Chemical Resistance Properties

  • Corresponding author: Yong-Ping Bai, baifengbai@hit.edu.cn
  • Received Date: 20 May 2017
    Accepted Date: 15 July 2017
    Available Online: 18 September 2017

  • In this study, two fluorinated polyurethanes (FPU) containing carborane groups in the main chains were firstly designed and synthesized via the reaction of hexamethylene diisocyanate trimer (HDI trimer) with fluorinated polyesters (CFPETs) having hydroxyl-terminated carborane groups at room temperature. The structures of carborane fluorinated polyesters (CFPETs) and polyurethanes (CFPUs) were characterized by gel permeation chromatography (GPC), Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) measurements. The thermal stability, mechanical properties, Shore A hardness, solvent resistance and acid-alkali resistance of the carborane fluorinated polyurethane films were also studied. Thermogravimetric analysis (TGA) tests manifested that the introduction of carborane groups into the main chain of fluorinated polyurethane endowed the obtained fluorinated polyurethane with excellent thermal stability. The thermal decomposition temperature of carborane fluorinated polyurethane (CFPU) increased by 190℃ compared with that of the carborane-free fluorinated polyurethane (FPU). Even at 800℃, CFPU showed the char yield of 66.5%, which was higher than that of FPU (34.3%). The carborane-containing fluorinated polyurethanes also showed excellent chemical resistance and prominent mechanical property even after the cured films being immersed into Jet aircraft oil or 37% HCl for 168 h or at high temperature (700℃). It is found that the structural characteristics of carborane group and the compacted structure of CFPU effectively improve the thermal stability, mechanical property, solvent resistance and acid-alkali resistance of the carborane-free fluorinated polyurethane. These excellent properties make CFPU as the useful raw materials to prepare the high temperature resistant coatings or adhesives for automotive engines, engine or fuel tank of aircraft and other equipment working in high-temperature or high concentrations of acid-alkali environments.
  • 加载中
    1. [1]

      Takakura T., Kato M., Yamabe M.. Synthesis and characterization of fluorine-containing segmented poly(urethane-urea)s[J]. Macromol. Chem. Phys., 1990,191(3):625-632.

    2. [2]

      Wu C. L., Chiu S. H., Lee H. T., Suen M. C.. Synthesis and properties of biodegradable polycaprolactone/polyurethanes using fluoro chain extenders[J]. Polym. Adv. Technol., 2016,27(5):665-676. doi: 10.1002/pat.v27.5

    3. [3]

      Ge Z., Zhang X., Dai J., Li W., Luo Y.. Synthesis, characterization and properties of a novel fluorinated polyurethane[J]. Eur. Polym. J., 2009,45(2):530-536. doi: 10.1016/j.eurpolymj.2008.11.008

    4. [4]

      Alyamac E., Soucek M. D.. Acrylate-based fluorinated copolymers for high-solids coatings[J]. Prog. Org. Coat., 2011,71(3):213-224. doi: 10.1016/j.porgcoat.2011.02.015

    5. [5]

      Dikić T., Erich S. J. F., Ming W., Huinink H. P., Thüne P. C., van Benthem R. A. T. M., With G.. Fluorine depth profiling by high-resolution 1D magnetic resonance imaging[J]. Polymer, 2007,48(14):4063-4067. doi: 10.1016/j.polymer.2007.05.017

    6. [6]

      Wang X., Hu J., Li Y., Zhang J., Ding Y.. The surface properties and corrosion resistance of fluorinated polyurethane coatings[J]. J. Fluorine. Chem., 2015,176:14-19. doi: 10.1016/j.jfluchem.2015.04.002

    7. [7]

      Smirnova O., Glazkov A., Yarosh A., Sakharov A.. Fluorinated polyurethanes, synthesis and properties[J]. Molecules, 2016,21(7). doi: 10.3390/molecules21070904

    8. [8]

      Li L., Wang X., Li Z., Bi W., Li Y., Qi Y., Dong Q.. The synthesis and curing kinetics study of a new fluorinated polyurethane with fluorinated side chains attached to soft blocks[J]. New J. Chem., 2016,40(1):596-605. doi: 10.1039/C5NJ01772F

    9. [9]

      Yu F., Cao L., Meng Z., Lin N., Liu X. Y.. Crosslinked waterborne polyurethane with high waterproof performance[J]. Polym. Chem., 2016,7(23):3913-3922. doi: 10.1039/C6PY00350H

    10. [10]

      Zhao X., Ding J., Ye L.. Structure and solvent-resistant property of fluorinated polyurethane elastomer[J]. Fluor. Chem., 2014,159:38-47. doi: 10.1016/j.jfluchem.2013.12.012

    11. [11]

      Shin M., Lee Y., Rahman M., Kim H.. Synthesis and properties of waterborne fluorinated polyurethane-acrylate using a solvent-/emulsifier-free method[J]. Polymer, 2013,54(18):4873-4882. doi: 10.1016/j.polymer.2013.07.005

    12. [12]

      Li J., Zhang X., Liu Z., Li W., Dai J.. Studies on waterborne polyurethanes based on new medium length fluorinated diols[J]. J. Fluor. Chem., 2015,175:12-17. doi: 10.1016/j.jfluchem.2015.02.015

    13. [13]

      Ou B., Chen M., Huang R., Zhou H.. Preparation and application of novel biodegradable polyurethane copolymer[J]. RSC Adv., 2016,6(52):47138-47144. doi: 10.1039/C6RA03064E

    14. [14]

      Park J. M., Lee Y. H., Park H., Kim H. D.. Preparation and properties of UV-curable fluorinated polyurethane acrylates[J]. J. Appl. Polym. Sci., 2014,131(16).  

    15. [15]

      Wang Z., Hou Z., Wang Y.. Fluorinated waterborne shape memory polyurethane urea for potential medical implant application[J]. J. Appl. Polym. Sci., 2013,127(1)710. doi: 10.1002/app.37862

    16. [16]

      Engels H. W., Pirkl H. G., Albers R., Albach R. W., Krause J., Hoffmann A., Dormish J.. Polyurethanes:versatile materials and sustainable problem solvers for today's challenges[J]. Angew. Chem. Int. Ed., 2013,52(36):9422-9441. doi: 10.1002/anie.v52.36

    17. [17]

      Wang Y., Bai Y.. The functionalization of fluoroelastomers:approaches, properties, and applications[J]. RSC Adv., 2016,6(59):53730-53748. doi: 10.1039/C6RA05816G

    18. [18]

      Yeganeh H., Shamekhi M. A.. Poly(urethane-imide-imide), a new generation of thermoplastic polyurethane elastomers with enhanced thermal stability[J]. Polymer, 2004,45(2):359-365. doi: 10.1016/j.polymer.2003.11.006

    19. [19]

      Kordomenos P. I., Kresta J. E., Frisch K. C.. Kinetics of the thermal dissociation of model urethane, oxazolidone, and isocyanurate block copolymers[J]. Macromolecules, 1987,20(9):2077-2083. doi: 10.1021/ma00175a006

    20. [20]

      Ma Y., Tang Q. Y., Zhu J., Wang L. H., Yao C.. Fluorescent and thermal properties of siloxane-polyurethanes based on 1, 8-naphthalimide[J]. Chin. Chem. Lett., 2014,25(5):680-686. doi: 10.1016/j.cclet.2014.01.048

    21. [21]

      Kausar A., Zulfiqar S., Sarwar M. I.. High performance segmented polyurethanes derived from a new aromatic diisocyanate and polyol[J]. Polym. Degrad. Stab., 2013,98(1):368-686. doi: 10.1016/j.polymdegradstab.2012.09.004

    22. [22]

      Yuan C. E., Rong M. Z., Zhang M. Q.. Self-healing polyurethane elastomer with thermally reversible alkoxyamines as crosslinkages[J]. Polymer, 2014,55(7):1782-1791. doi: 10.1016/j.polymer.2014.02.033

    23. [23]

      Wang Y., Kou K., Li Z., Wu G., Zhang Y., Feng A.. Synthesis, characterization, and thermal properties of benzoxazine monomers containing allyl groups[J]. High. Perform. Polym., 2016,28(10):1235-1245. doi: 10.1177/0954008315623353

    24. [24]

      Sugden I. J., Plant D. F., Bell R. G.. Thermal rearrangement mechanisms in icosahedral carboranes and metallocarboranes[J]. Chem. Commun., 2013,49(10):975-977. doi: 10.1039/C2CC37520F

    25. [25]

      Tsuji M.. On attempts at generation of carboranyl carbocation[J]. J. Org. Chem., 2003,68(25):9589-9597. doi: 10.1021/jo035090f

    26. [26]

      Grimes, R. N., in "Carboranes", Second Edition., Elsevier, New York, 2011, Chapter 9, p. 301

    27. [27]

      Armstrong A. F., Valliant J. F.. The bioinorganic and medicinal chemistry of carboranes:from new drug discovery to molecular imaging and therapy[J]. Dalton. Trans., 2007,38:4240-4251.  

    28. [28]

      Xing T., Zhang K.. Syntheses of novel soluble carborane polyimides with ultrahigh thermal stability[J]. Polym. Int., 2015,64(12):1715-1721. doi: 10.1002/pi.2015.64.issue-12

    29. [29]

      Huang X., Zhang Q., Meng Z., Gu J., Jia X., Xi K.. Greatly enhanced thermo-oxidative stability of polybenzoxazine thermoset by incorporation of m-carborane[J]. J. Polym. Sci., Part A:Polym. Chem., 2015,53(8):973-980. doi: 10.1002/pola.v53.8

    30. [30]

      Parrott M. C., Valliant J. F., Adronov A.. Thermally induced phase transition of carborane-functionalized aliphatic polyester dendrimers in aqueous media[J]. Langmuir, 2006,22(12):5251-5255. doi: 10.1021/la0529355

    31. [31]

      Men X., Cheng Y., Chen G., Bao J., Yang J.. Curing behaviour and thermal properties of epoxy resin cured byaromatic diamine with carborane[J]. High. Perform. Polym., 2015,27(4):497-509. doi: 10.1177/0954008314557049

    32. [32]

      Qi S. C., Han G., Wang H. R., Li N., Zhang X. A., Jiang S. L., Lu Y. F.. Synthesis and characterization of carborane bisphenol resol phenolic resins with ultrahigh char yield[J]. Chinese J. Polym. Sci., 2015,33(11):1606-1617. doi: 10.1007/s10118-015-1712-1

    33. [33]

      Luo Y., Lu Y., Li N., Li Y., Zhang X., Qi S.C.. Synthesis, structure, and properties of segmented carborane-containing polyurethanes[J]. Appl. Polym. Sci., 2015,132(28):42227-42238.  

    34. [34]

      Jiang Y. M., Lv Y. F., Li Y., Qi S.C.. Synthesis, characterization and thermal properties of carborane-siloxane polymers[J]. Polym. Mater. Sci. Eng., 2014,30(9):1-4.  

    35. [35]

      Qi S., Wang H., Han G., Yang Z., Zhang X. A., Jiang S., Lu Y.. Synthesis, characterization, and curing behavior of carborane-containing benzoxazine resins with excellent thermal and thermo-oxidative stability[J]. J. Appl. Polym. Sci., 2016,133(23):43488-43499.  

    36. [36]

      Li J., Lu Y., Liu Y., Li Y., Zhang X., Qi S.. Synthesis, characterization, curing and properties of carboxyl-terminated liquid fluoropolymers[J]. Polym-Plast. Technol., 2014,53(1):46-53. doi: 10.1080/03602559.2013.843688

    37. [37]

      Li N., Zeng F., Qu D., Zhang J., Shao L., Bai Y.. Synthesis and characterization of carborane-containing polyester withexcellent thermal and ultrahigh char yield[J]. J. Appl. Polym. Sci., 2016,133(46):44202-44213.  

    38. [38]

      Li, J., "Study on functional liquid fluoroelastomer", Thesis, Beijing University of Chemical Technology, 2013

    39. [39]

      Wang S., Jing X., Wang Y., Si J.. High char yield of aryl boron-containing phenolic resins:the effect of phenylboronic acid on the thermal stability and carbonization of phenolic resins[J]. Polym. Degrad. Stab., 2014,99:1-11. doi: 10.1016/j.polymdegradstab.2013.12.011

    40. [40]

      Fergus J. W., Worrell W. L.. Silicon-carbide/boron-containing coatings for the oxidation protection of graphite[J]. Carbon, 1995,33(4):537-543. doi: 10.1016/0008-6223(94)00178-3

    41. [41]

      Martin C., Ronda J. C., Cadiz V.. Boron-containing novolac resins as flame retardant materials[J]. Polym. Degrad. Stab., 2006,91(4):747-754. doi: 10.1016/j.polymdegradstab.2005.05.025

    42. [42]

      Liu Y., Hsiue G., Chiu Y., Jeng R.. Phosphorus containing epoxy for flame retardant Ⅱ:Curing reaction of bis-(3-glycidyloxy) phenylphosphine oxide[J]. J. Appl. Polym. Sci., 2015,61(10):1789-1796.  

    43. [43]

      Dogan M., Yilmaz A., Bayraml E.. Synergistic effect of boron containing substances on flame retardancy and thermal stability of intumescent polypropylene composites[J]. Polym. Degrad. Stab., 2010,95(12):2584-2588. doi: 10.1016/j.polymdegradstab.2010.07.033

    44. [44]

      King R. B.. Three-dimensional aromaticity in deltahedral boranes and carboranes[J]. Russ. Chem. B, 1993,42(8):1283-1291. doi: 10.1007/BF00699915

    45. [45]

      Glukhov I. V., Lyssenko K. A., Korlyukova. A. A., Antipina M. Y.. Carboranes:chemical concepts derived from the AIM study of the experimental and theoretical electron density distribution functions[J]. Faraday Discuss., 2007,135:203-215. doi: 10.1039/B605811F

    46. [46]

      Li N., Zeng F., Wang Y., Qu D., Hu W., Luan Y. G., Dong S., Zhang J. J., Bai Y. P.. Fluorinated polyurethane based on liquid fluorine elastomer (LFH) synthesis via two-step method:the critical value of thermal resistance and mechanical properties[J]. RSC Adv., 2017,7:30970-30978. doi: 10.1039/C7RA04509C

    47. [47]

      Fan M., Sun S. L., Qiu Y. Q., Liu X. D., Su Z. M.. DFT study on the second-order nonlinear optical property of 12-vertex close-carborane derivatives[J]. Int. J. Quantu. Chem., 2011,111(5):1039-1042. doi: 10.1002/qua.v111.5

    48. [48]

      Lu J. Y., Du Y. M., Wang H., Li J. Y., Wang W. Q., Zhang J. W., Xue Y. N., Lv J.. A novel coronavirus associated with severe acute respiratory syndrome[J]. Syn. Chem., 2015,23(9):883-890.  

    49. [49]

      Qi S. C., Wang Y. S., Han G., Yang Z., Zhang X. A., Jiang S. L., Lv Y. F.. Characterization and high temperature resistance of diglycidyl ether of carborane bisphenol[J]. Acta Polymerica Sinica (in Chinese), 2015(8):921-926.  

    50. [50]

      Jiang Y. Y., Lv Y. F., Li Y., Qi S.C.. Synthesis, characterization and thermal properties of carborane-siloxane polymers[J]. Polym. Mater. Sci. Eng., 2014,30(9):1-4.  

  • 加载中
    1. [1]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    2. [2]

      Xiao YuDongyue CuiMengmeng WangZhaojin WangMengzhu WangDeshuang TuVladimir BregadzeChangsheng LuQiang ZhaoRunfeng ChenHong Yan . Boron cluster-based TADF emitter via through-space charge transfer enabling efficient orange-red electroluminescence. Chinese Chemical Letters, 2025, 36(3): 110520-. doi: 10.1016/j.cclet.2024.110520

    3. [3]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    4. [4]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    5. [5]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    6. [6]

      Rongjian ChenJiahui LiuCaixia LinYuanming LiYanhou GengYaofeng Yuan . Synthesis and properties of tetraphenylethene cationic cyclophanes based on o-carborane skeleton. Chinese Chemical Letters, 2024, 35(12): 110074-. doi: 10.1016/j.cclet.2024.110074

    7. [7]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    8. [8]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    9. [9]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    10. [10]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenQiang SunShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoLi Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100

    11. [11]

      Yong-Dan ZhaoYidan WangRongrong WangLina ChenHengtong ZuoXi WangJihong QiangGeng WangQingxia LiCanqi PingShuqiu ZhangHao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929

    12. [12]

      Yixuan WangJiexin LiZhihao ShangChengcheng FengJianmin GuMaosheng YeRan ZhaoDanna LiuJingxin MengShutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623

    13. [13]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    14. [14]

      Shaoqing DuXinyong LiuXueping HuPeng Zhan . Targeting novel sites represents an effective strategy for combating drug resistance. Chinese Chemical Letters, 2025, 36(1): 110378-. doi: 10.1016/j.cclet.2024.110378

    15. [15]

      Xiaofang LuoYe WuXiaokun ZhangMin TangFeiye JuZuodong QinGregory J DunsWei-Dong ZhangJiang-Jiang QinXin Luan . Peptide-based strategies for overcoming multidrug-resistance in cancer therapy. Chinese Chemical Letters, 2025, 36(1): 109724-. doi: 10.1016/j.cclet.2024.109724

    16. [16]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

    17. [17]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    18. [18]

      Tiantian LongHongmei LuoJingbo SunFengniu LuYi ChenDong XuZhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728

    19. [19]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    20. [20]

      Liping ZhaoXixi GuoZhimeng ZhangXi LuQingxuan ZengTianyun FanXintong ZhangFenbei ChenMengyi XuMin YuanZhenjun LiJiandong JiangJing PangXuefu YouYanxiang WangDanqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506

Metrics
  • PDF Downloads(0)
  • Abstract views(844)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return