Citation: Jing-Jing Wu, Jin Zhou, Jing-Qiu Rong, Yao Lu, Hui Dong, Hai-Yin Yu, Jia-Shan Gu. Grafting Branch Length and Density Dependent Performance of Zwitterionic Polymer Decorated Polypropylene Membrane[J]. Chinese Journal of Polymer Science, ;2018, 36(4): 528-535. doi: 10.1007/s10118-018-2013-2 shu

Grafting Branch Length and Density Dependent Performance of Zwitterionic Polymer Decorated Polypropylene Membrane

  • Branch length and density have critical effects on membrane performances; however, it is regarded to be traditionally difficult to investigate the relationship due to the uncontrolled membrane modification methods. In this study, zwitterionic polymer with controlled grafting branch chain length (degree of polymerization) and grafting density (grafting chains per membrane area) was tethered to the microporous polypropylene membrane surface based on the combination of reversible addition-fragmentation chain transfer (RAFT) polymerization technique with click reaction. The modified membranes were tested by filtrating protein dispersion to highlight the correlations of branch chain length and grafting density with the membrane permeation performances. The pure water flux, the flux recovery ratio are positively and significantly, and the irreversible fouling negatively and significantly correlated with grafting density. These results demonstrate that the larger the coverage of the membrane with poly{[2-(methacryloyloxy)ethyl]-dimethyl-(3-sulfopropyl) ammonium hydroxide} (PMEDSAH), the higher the pure water flux and the higher the flux recover ratio, and the lower the irreversible fouling, which shows that high grafting density is favorable to fouling reducing.
  • 加载中
    1. [1]

      Dai Q. W., Xu Z. K., Deng H. T., Liu Z. M., Wu J., Seta P.. Surface modification of microporous polypropylene membranes by graft polymerization of N, N-dimethylaminoethyl methacrylate[J]. Chinese J. Polym. Sci., 2004,22(4):369-377.  

    2. [2]

      Jaleh B., Parvin P., Wanichapichart P., Saffar A. P., Reyhani A.. Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma[J]. Appl. Surf. Sci., 2010,257(5):1655-1659. doi: 10.1016/j.apsusc.2010.08.117

    3. [3]

      Yang Q., Xu Z. K., Dai Z. W., Wang J. L., Ulbricht M.. Surface modification of polypropylene microporous membranes with a novel glycopolymer[J]. Chem. Mater., 2005,17(11):3050-3058. doi: 10.1021/cm048012x

    4. [4]

      Liu Z. M., Xu Z. K., Ulbricht M.. Surface modification of polypropylene microporous membrane by tethering polypeptides[J]. Chinese J. Polym. Sci., 2006,24(5):529-538. doi: 10.1142/S0256767906001606

    5. [5]

      Ma G. Q., Zhai J. J., Liu B., Huang D. H., Sheng J.. Plasma modification of polypropylene surfaces and grafting copolymerization of styrene onto polypropylene[J]. Chinese J. Polym. Sci., 2012,30(3):423-435. doi: 10.1007/s10118-012-1130-6

    6. [6]

      Yang Q., Tian J., Xu Z. K.. Photo-induced graft polymerization of acrylamide on polypropylene membrane surface in the presence of dibenzyl trithiocarbonate[J]. Chinese J. Polym. Sci., 2007,25(2):221-226. doi: 10.1142/S0256767907002047

    7. [7]

      Meng J. Q., Yuan T., Kurth C. J., Shi Q., Zhang Y. F.. Synthesis of antifouling nanoporous membranes having tunable nanopores via click chemistry[J]. J. Membr. Sci., 2012:401-117.  

    8. [8]

      Semsarilar M., Ladmiral V., Perrier S.. Highly branched and hyperbranched glycopolymers via reversible addition-fragmentation chain transfer polymerization and click chemistry.[J]. Macromolecules, 2010,43(3):1438-1443. doi: 10.1021/ma902587r

    9. [9]

      Khabibullin A., Bhangaonkar K., Mahoney C., Lu Z., Schmitt M., Sekizkardes A. K., Bockstaller M. R., Matyjaszewski K.. Grafting PMMA brushes from alpha-alumina nanoparticles via SI-ATRP[J]. ACS Appl. Mater. Interfaces, 2016,8(8):5458-5465. doi: 10.1021/acsami.5b12311

    10. [10]

      Wu X. M., Wang L. L., Wang Y., Gu J. S., Yu H. Y.. Surface modification of polypropylene macroporous membrane by marrying RAFT polymerization with click chemistry[J]. J. Membr. Sci., 2012:421-68.  

    11. [11]

      Lalani R., L iu, L .. Synthesis, characterization, and electrospinning of zwitterionic poly(sulfobetaine methacrylate)[J]. Polymer, 2011,52(23):5344-5354. doi: 10.1016/j.polymer.2011.09.015

    12. [12]

      Ladd J., Zhang Z., Chen S., Hower J. C., Jiang S.. Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma[J]. Biomacromolecules, 2008,9(5):1357-1361. doi: 10.1021/bm701301s

    13. [13]

      Vogler E. A.. Structure and reactivity of water at biomaterial surfaces[J]. Adv. Colloid Interf. Sci., 1998,74:69-117. doi: 10.1016/S0001-8686(97)00040-7

    14. [14]

      Zhang Z., Zhang M., Chen S., Horbett T. A., Ratner B. D., Jiang S.. Blood compatibility of surfaces with superlow protein adsorption[J]. Biomaterials, 2008,29(32):4285-4291. doi: 10.1016/j.biomaterials.2008.07.039

    15. [15]

      Shih Y. J., Chang Y.. Tunable blood compatibility of polysulfobetaine from controllable molecular-weight dependence of zwitterionic nonfouling nature in aqueous solution[J]. Langmuir, 2010,26(22):17286-17294. doi: 10.1021/la103186y

    16. [16]

      Yu H.Y., Kang Y., Liu Y. L., Mi B. X.. Grafting polyzwitterions onto polyamide by click chemistry and nucleophilic substitution on nitrogen:a novel approach to enhance membrane fouling resistance[J]. J. Membr. Sci., 2014,449:50-57. doi: 10.1016/j.memsci.2013.08.022

    17. [17]

      Ranjan R., Brittain W. J.. Combination of living radical polymerization and click chemistry for surface modification[J]. Macromolecules, 2007,40(40):6217-6223.  

    18. [18]

      Yadav S. K., Yoo H. J., Cho J. W.. Click coupled graphene for fabrication of high-performance polymer nanocomposites[J]. J. Polym. Sci., Part B:Polym. Phys., 2013,51(1):39-47. doi: 10.1002/polb.v51.1

    19. [19]

      Barbey R., Perrier S.. Synthesis of polystyrene-based hyperbranched polymers by Thiol-Yne chemistry:a detailed investigation[J]. Macromolecules, 2014,47(19):6697-6705. doi: 10.1021/ma500702c

    20. [20]

      Ying L., Yu W. H., Kang E. T., Neoh K. G.. Functional and surface-active membranes from poly(vinylidene fluoride)-graft-poly(acrylic acid) prepared via RAFT-mediated graft copolymerization[J]. Langmuir, 2004,20(14):6032-6040. doi: 10.1021/la049383v

    21. [21]

      Yu H. Y., Li W., Zhou J., Gu J. S., Huang L., Tang Z. Q., Wei X. W.. Thermo-and pH-responsive polypropylene microporous membrane prepared by the photoinduced RAFT-mediated graft copolymerization[J]. J. Membr. Sci., 2009,343(1-2):82-89. doi: 10.1016/j.memsci.2009.07.012

    22. [22]

      Balamurugan S., Mandale A., Badrinarayanan S., Vernekar S.. Photochemical bromination of polyolefin surfaces[J]. Polymer, 2001,42(6):2501-2512. doi: 10.1016/S0032-3861(00)00632-7

    23. [23]

      Chanunpanich N., Ulman A., Strzhemechny Y., Schwarz S., Janke A., Braun H., Kraztmuller T.. Surface modification of polyethylene through bromination[J]. Langmuir, 1999,15(6):2089-2094. doi: 10.1021/la980996f

    24. [24]

      Song L., Zhao J., Yang H., Jin J., Li X., Stagnaro P., Yin J. H.. Biocompatibility of polypropylene non-woven fabric membrane via UV-induced graft polymerization of 2-acrylamido-2-methylpropane sulfonic acid[J]. Appl. Surf. Sci., 2011,258(1):425-430. doi: 10.1016/j.apsusc.2011.08.118

    25. [25]

      Wu X. M., Wang L. L., Wang Y., Gu J. S., Yu H. Y.. Surface modification of polypropylene macroporous membrane by marrying RAFT polymerization with click chemistry[J]. J. Membr. Sci., 2012,421:60-68.  

    26. [26]

      Cai T., Neoh K.G., Kang E.T.. Poly(vinylidene fluoride) graft copolymer membranes with "clickable" surfaces and their functionalization[J]. Macromolecules, 2011,44(11):4258-4268. doi: 10.1021/ma2002728

    27. [27]

      Rjeb A., Letarte S., Tajounte L., El Idrissi M. C., Adnot A., Roy D., Claire Y., Kaloustian J.. Polypropylene natural aging studied by X-ray photoelectron spectroscopy[J]. J. Electron Spectrosco., 2000,107(3):221-230. doi: 10.1016/S0368-2048(00)00121-3

    28. [28]

      Yue W. W., Li H. J., Xiang T., Qin H., Sun S. D., Zhao C. S.. Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility[J]. J. Membr. Sci., 2013,446:79-91. doi: 10.1016/j.memsci.2013.06.029

    29. [29]

      Zhang Z., Chen S., Chang Y., Jiang S.. Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings[J]. J. Phys. Chem., 2006,110(22):10799-10804. doi: 10.1021/jp057266i

    30. [30]

      Li L., Yin Z., Li F., Xiang T., Chen Y., Zhao C.. Preparation and characterization of poly(acrylonitrile-acrylic acid-N-vinyl pyrrolidinone) terpolymer blended polyethersulfone membranes[J]. J. Membr. Sci., 2010,349(1):56-64.  

    31. [31]

      Wang L. L., Wu J. J., Zhang Z. B., Zhou J., He X. C., Yu H. Y., Gu J. S.. Methoxypolyethylene glycol grafting on polypropylene membrane for enhanced antifouling characteristics:effect of pendant length and grafting density[J]. Sep. Purif. Technol., 2016,164:81-88. doi: 10.1016/j.seppur.2016.03.010

    32. [32]

      Belfer S., Fainshtain R., Purinson Y., Gilron J., Nystrom M., Manttari M.. Modification of NF membrane properties by in situ redox initiated graft polymerization with hydrophilic monomers[J]. J. Membr. Sci., 2004,239(1):55-64. doi: 10.1016/j.memsci.2003.09.029

    33. [33]

      le Roux I., Krieg H. M., Yeates C. A., Breytenbach J. C.. Use of chitosan as an antifouling agent in a membrane bioreactor[J]. J. Membr. Sci., 2005,248(1-2):127-136. doi: 10.1016/j.memsci.2004.10.005

    34. [34]

      Yu H. Y., He X. C., Liu L. Q., Gu J. S., Wei X. W.. Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR:N2 plasma treatment[J]. Water Res., 2007,41(20):4703-4709. doi: 10.1016/j.watres.2007.06.039

  • 加载中
    1. [1]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    2. [2]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    3. [3]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    4. [4]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    5. [5]

      Zhiwei ChenHeyun ShengXue LiMenghan ChenXin LiQiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937

    6. [6]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    7. [7]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    8. [8]

      Si HaJiacheng ZhuHua XiangGuoshun Luo . Hydrophobic tag tethering degrader as a promising paradigm of protein degradation: Past, present and future perspectives. Chinese Chemical Letters, 2024, 35(8): 109192-. doi: 10.1016/j.cclet.2023.109192

    9. [9]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    10. [10]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    11. [11]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    12. [12]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    13. [13]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    14. [14]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    15. [15]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    16. [16]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    17. [17]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    18. [18]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

    19. [19]

      Lingna WangChenxin TianRuobin DaiZhiwei Wang . Eco-friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(9): 109356-. doi: 10.1016/j.cclet.2023.109356

    20. [20]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

Metrics
  • PDF Downloads(0)
  • Abstract views(743)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return