Citation: Wei Deng, Hua-Chao Guo, Wei-Li Yu, Cheng-You Kan. Effects of Shell Composition, Dosage and Alkali Type on the Morphology of Polymer Hollow Microspheres[J]. Chinese Journal of Polymer Science, ;2018, 36(1): 43-48. doi: 10.1007/s10118-018-2012-3 shu

Effects of Shell Composition, Dosage and Alkali Type on the Morphology of Polymer Hollow Microspheres

  • Polymer hollow microspheres were prepared by performing alkali treatment on the multilayer core/shell polymer latex particles containing carboxyl groups. Effects of the shell composition and dosage as well as alkali type on the morphology of the microspheres were investigated. Results showed that in comparison with acrylonitrile (AN) and methacrylic acid (MAA), using butyl acrylate (BA) as the shell co-monomer decreased the glass transition temperature (Tg) of shell effectively and was beneficial to the formation of uniform and big hollow structure. Along with the increase of the shell dosage, the alkali-treated microspheres sequentially presented porous and hollow morphology, and the size of microspheres increased, while the hollow diameter increased first and then decreased, and the maximum hollow ratio reached 39.5%. Furthermore, the multilayer core/shell microspheres had better tolerance to NH3·H2O than to NaOH. When the molar ratio of alkali to methacrylic acid (MRalkali/acid) for NaOH ranged from 1.15 to 1.30 or MRalkali/acid for NH3·H2O ranged from 1.30 to 2.00, the regular polymer hollow microspheres could be obtained.
  • 加载中
    1. [1]

      Nuasaen S., Tangboriboonrat P.. Optical properties of hollow latex particles as white pigment in paint film[J]. Prog. Org. Coat., 2015,79:83-89. doi: 10.1016/j.porgcoat.2014.11.012

    2. [2]

      Lan Y., Yang L., Zhang M. C., Zhang W. Q., Wang S. N.. Microreactor of Pd nanoparticles immobilized hollow microspheres for catalytic hydrodechlorination of chlorophenols in water[J]. ACS Appl. Mater. Interfaces, 2010,2(1):127-133. doi: 10.1021/am900622p

    3. [3]

      Tan L. F., Tang W. T., Liu T. L., Ren X. L., Fu C. H., Bo L., Ren J., Meng X. W.. Biocompatible hollow polydopamine nanoparticles loaded ionic liquid enhanced tumor microwave thermal ablation in vivo[J]. ACS Appl. Mater. Interfaces, 2016,8(18):11237-11245. doi: 10.1021/acsami.5b12329

    4. [4]

      Mcdonald C. J., Devon M. J.. Hollow latex particles:synthesis and applications[J]. Adv. Colloid Interf. Sci., 2002,99(3):181-213. doi: 10.1016/S0001-8686(02)00034-9

    5. [5]

      Kawaguchi H.. Functional polymer microspheres[J]. Prog. Polym. Sci., 2000,25(8):1171-1210. doi: 10.1016/S0079-6700(00)00024-1

    6. [6]

      Fu G. D., Li G. L., Neoh K. G., Kang E. T.. Hollow polymeric nanostructures-synthesis, morphology and function[J]. Prog. Polym. Sci., 2011,36(1):127-167. doi: 10.1016/j.progpolymsci.2010.07.011

    7. [7]

      Pavlyuchenko V. N., Sorochinskaya O. V., Ivanchev S. S., Klubin V. V., Kreichman G. S., Budtov V. P., Skrifvars M., Halme E., Koskinen J.. Hollow-particle latexes:preparation and properties[J]. J. Polym. Sci., Part A:Polym. Chem., 2001,39(9):1435-1449. doi: 10.1002/(ISSN)1099-0518

    8. [8]

      Akamatsu K., Chen W., Suzuki Y., Ito T., Nakao A., Sugawara T., Kikuchi R., Nakao S.. Preparation of monodisperse chitosan microcapsules with hollow structures using the SPG membrane emulsification technique[J]. Langmuir, 2010,26(18):14854-14860. doi: 10.1021/la101967u

    9. [9]

      Guo H. T., Yun H. N., Zetterlund P. B., Thickett S. C.. Factors influencing the preparation of hollow polymer-graphene oxide microcapsules via Pickering miniemulsion polymerization[J]. Polymer, 2015,63:1-9. doi: 10.1016/j.polymer.2015.02.035

    10. [10]

      Panahian P., Salami-Kalajahi M., Hosseini M. S.. Synthesis of dual thermoresponsive and pH-sensitive hollow nanospheres by atom transfer radical polymerization[J]. J. Polym. Res., 2014,21(6):1-8.  

    11. [11]

      Cui H. G., Chen Z., Zhong S., Wooley K. L., Pochan D. J.. Block copolymer assembly via kinetic control[J]. Science, 2007,317(5838):647-650. doi: 10.1126/science.1141768

    12. [12]

      Huang B., Bai F., Yang X. L., Huang W. Q.. Synthesis of monodisperse hollow polymer microspheres with functional groups by distillation precipitation polymerization[J]. Chinese J. Polym. Sci., 2010,28(2):277-285. doi: 10.1007/s10118-010-9089-7

    13. [13]

      Kowalski, A., Vogel, M. and Blankenship, R. M., 1983, E. P. Pat., 0, 073, 529

    14. [14]

      Vogel, M., Kowalski, A. and Scott, J. D., 1987, E. P. Pat., 0, 267, 726

    15. [15]

      Wang X. J., Feng J., Bai Y. C., Zhang Q., Yin Y. D.. Synthesis, properties, and applications of hollow micro-/nanostructures[J]. Chem. Rev., 2016,116(18):10983-11060. doi: 10.1021/acs.chemrev.5b00731

    16. [16]

      Zhang W. H., Huang Y., Tian W.. Polymer-based hollow microspheres:preparation methods and applications[J]. Prog. Chem., 2013,25(11):1951-1961.  

    17. [17]

      Okubo M., Ito A., Kanenobu T.. Production of submicron-sized multihollow polymer particles by alkali/cooling method[J]. Colloid Polym. Sci., 1996,274(8):801-804. doi: 10.1007/BF00654677

    18. [18]

      Okubo M., Ichikawa K., Fujimura M.. Production of multi-hollow polymer microspheres by stepwise alkali/acid method Ⅱ. Alkali treatment process[J]. Colloid Polym. Sci., 1991,269(12):1257-1262.  

    19. [19]

      Jiang Y. M., Li B. T., Deng W., Li X. Y., Kan C. Y.. Effect of monomer feeding mode on the preparation of hollow latexes with high MAA content in the core latex preparation[J]. Chinese J. Polym. Sci., 2014,32(1):21-28. doi: 10.1007/s10118-014-1391-3

    20. [20]

      Jiang Y. M., Li B. T., Wang W. J., Xu M., Kan C. Y.. Effect of the shell crosslinking level and core/shell ratio on the morphology of latex particles in the preparation of hollow latexes[J]. Chinese J. Polym. Sci., 2014,32(2):177-186. doi: 10.1007/s10118-014-1387-z

    21. [21]

      Nuasaen S., Tangboriboonrat P.. Highly charged hollow latex particles prepared via seeded emulsion polymerization[J]. J. Colloid Interf. Sci., 2013,396(6):75-82.  

    22. [22]

      Shen J., Xu J., Hu Y., Sun J. W., Li L. X., Kan C. Y.. Investigation of cationic soapless P(St-co-DMAEMA) latex and its electrostatic adsorption of laponite[J]. Chinese J. Polym. Sci., 2016,34(10):1240-1250. doi: 10.1007/s10118-016-1829-x

    23. [23]

      Shen J., Xu J., Hu Y., Li J. P., Kan C. Y.. Fabrication of amino-containing hollow polymer latex and its composite with inorganic nanoparticles[J]. Colloid Polym. Sci., 2017,295(4):679-688. doi: 10.1007/s00396-017-4059-z

    24. [24]

      Fang Y. J., Deng W., Zuo H., Kan C. Y.. Preparation of hollow polymer particles and orthogonal experiment design for alkali post-treatment conditions[J]. Acta Polymerica Sinica, 2015(8):927-932.  

    25. [25]

      Deng W., Guo H. C., Zhang W. N., Kan C. Y.. Fabrication and morphology control of hollow polymer particles by altering core particle size[J]. Colloid Polym. Sci., 2014,292(10):2687-2694. doi: 10.1007/s00396-014-3323-8

    26. [26]

      Ceska G. W.. The effect of carboxylic monomers on surfactant-free emulsion copolymerization[J]. J. Appl. Polym. Sci., 1974,18(2):427-437. doi: 10.1002/app.1974.070180210

    27. [27]

      Deng W., Wang M. Y., Chen G., Kan C. Y.. Morphological evolution of multistage polymer particles in the alkali post-treatment[J]. Eur. Polym. J., 2010,46(6):1210-1215. doi: 10.1016/j.eurpolymj.2010.03.009

    28. [28]

      Cardinal C. M., Francis L. F., Scriven L. E.. Drying and collapse of hollow latex[J]. J. Coat. Technol. Res, 2008,6(4):457-469.  

  • 加载中
    1. [1]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    2. [2]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    3. [3]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

    4. [4]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    5. [5]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    6. [6]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    7. [7]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    8. [8]

      Ning ZhangMengjie QinJiawen ZhuXuejing LouXiao TianWende MaYoumei WangMinghua LuZongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177

    9. [9]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    10. [10]

      Xin LuHaoran SunXiaomeng LiChunrui LiJinfeng WangDandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936

    11. [11]

      Chunlei DaiLiying WangXinru YouYi ZhaoZhong CaoJun Wu . Coffee-derived self-anti-inflammatory polymer as drug nanocarrier for enhanced rheumatoid arthritis treatment. Chinese Chemical Letters, 2025, 36(3): 109869-. doi: 10.1016/j.cclet.2024.109869

    12. [12]

      Xingqun PuRongrong LiuYuting XieChenjing YangJingyi ChenBaoling GuoChun-Xia ZhaoPeng ZhaoJian RuanFangfu YeDavid A WeitzDong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820

    13. [13]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    14. [14]

      Ajay Piriya Vijaya Kumar Saroja Yuhan Wu Yang Xu . Improving the electrocatalysts for conversion-type anodes of alkali-ion batteries. Chinese Journal of Structural Chemistry, 2025, 44(1): 100408-100408. doi: 10.1016/j.cjsc.2024.100408

    15. [15]

      Shan JiangLingchen MengWenyue MaQingkai QiWei ZhangBin XuLeijing LiuWenjing Tian . Corrigendum to 'Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection' [Chin. Chem. Lett. 32 (2021) 1037-1040]. Chinese Chemical Letters, 2024, 35(12): 108998-. doi: 10.1016/j.cclet.2023.108998

    16. [16]

      Zhigang ZengChangzhou LiaoLei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349

    17. [17]

      Xi ChenXue ZhangShuai YangJie WangTian TangMaling Gou . An adhesive hydrogel for the treatment of oral ulcers. Chinese Chemical Letters, 2025, 36(3): 110021-. doi: 10.1016/j.cclet.2024.110021

    18. [18]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    19. [19]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    20. [20]

      Jiaxu WangJinxie ZhangXiuping WangJingying WangLina ChenJiahui CaoWei CaoSiyu LiangPing LuanKe ZhengXiao-Kun OuyangLi GaoXiaowen OuFan ZhangMeitong OuLin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697

Metrics
  • PDF Downloads(0)
  • Abstract views(783)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return