Citation: Wei Zhao, Jia Qiao, Tian-Li Ning, Xi-Kui Liu. Scalable Ambient Pressure Synthesis of Covalent Organic Frameworks and Their Colorimetric Nanocomposites through Dynamic Imine Exchange Reactions[J]. Chinese Journal of Polymer Science, ;2018, 36(1): 1-7. doi: 10.1007/s10118-018-2010-5 shu

Scalable Ambient Pressure Synthesis of Covalent Organic Frameworks and Their Colorimetric Nanocomposites through Dynamic Imine Exchange Reactions

  • Corresponding author: Xi-Kui Liu, xkliu@scu.edu.cn
  • Received Date: 11 June 2017
    Revised Date: 18 July 2017
    Accepted Date: 18 July 2017
    Available Online: 8 November 2017

  • A novel scale-up ambient pressure synthetic strategy for the preparation of imine-based covalent organic frameworks (COFs) was proposed through dynamic imine exchange reaction mechanism. The obtained COFs exhibited good crystallinity and much higher porosity comparable to their solvothermally synthesized counterparts. Moreover, under ambient pressure, the COF nanofibers could readily grow on the surface of polyimide films, and the resulted nanocomposite film showed an interesting colorimetric acid-responsive behavior.
  • 加载中
    1. [1]

      Côté A. P., Benin A. I., Ockwig N. W., O'Keeffe M., Matzger A. J., Yaghi O. M.. Porous, crystalline, covalent organic frameworks[J]. Science, 2005,310:1166-1170. doi: 10.1126/science.1120411

    2. [2]

      Ding S. Y., Wang W.. Covalent organic frameworks[J]. Chem. Soc. Rev., 2013,42:548-568. doi: 10.1039/C2CS35072F

    3. [3]

      Waller P. J., Gándara F., Yaghi O. M.. Chemistry of covalent organic frameworks[J]. Acc. Chem. Res., 2015,48:3053-3063. doi: 10.1021/acs.accounts.5b00369

    4. [4]

      Li Z. J., Ding S. Y., Xue H. D., Cao W., Wang W.. Synthesis of-C=N-linked covalent organic frameworks via the direct condensation of acetals and amines[J]. Chem. Commun., 2016,52:7217-7220. doi: 10.1039/C6CC00947F

    5. [5]

      Colson J. W., Dichtel W. R.. Rationally synthesized two-dimensional polymers[J]. Nat. Chem., 2013,5:453-465. doi: 10.1038/nchem.1628

    6. [6]

      Xiao F., Ding X. S., Jiang D. L.. Covalent organic frameworks[J]. Chem. Soc. Rev., 2012,41:6010-6022. doi: 10.1039/c2cs35157a

    7. [7]

      Ding S. Y., Gao J., Wang Q., Zhang Y., Song W. G., Su C. Y., Wang W.. Construction of covalent organic framework for catalysis:Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction[J]. J. Am. Chem. Soc., 2011,133:19816-19822. doi: 10.1021/ja206846p

    8. [8]

      Doonan C. J., Tranchemontagne D. J., Glover T. G., Hunt J. R., Yaghi O. M.. Exceptional ammonia uptake by a covalent organic framework[J]. Nat. Chem., 2010,2:235-238. doi: 10.1038/nchem.548

    9. [9]

      Uribe-Romo F. J., Hunt J. R., Furukawa H., Klöck C., O'Keeffe M., Yaghi O. M.. A crystalline imine-linked 3-D porous covalent organic framework[J]. J. Am. Chem. Soc., 2009,131:4570-4571. doi: 10.1021/ja8096256

    10. [10]

      Spitler E. L., Giovino M. R., White S. L., Dichtel W. R.. A mechanistic study of Lewis acid-catalyzed covalent organic framework formation[J]. Chem. Sci., 2011,2:1588-1953. doi: 10.1039/C1SC00260K

    11. [11]

      Tan J., Namuangruk S., Kong W. F., Kungwan N., Guo J., Wang C. C.. Manipulation of amorphous-to-crystalline transformation:towards the construction of covalent organic framework hybrid microspheres with NIR photothermal conversion ability[J]. Angew. Chem. Int. Ed., 2016,55:13979-13984. doi: 10.1002/anie.v55.45

    12. [12]

      Kuhn P., Antonietti M., Thomas A.. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis[J]. Angew. Chem. Int. Ed., 2008,47:3450-3453. doi: 10.1002/(ISSN)1521-3773

    13. [13]

      Furukawa H., Yaghi O. M.. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications[J]. J. Am. Chem. Soc., 2009,131:8875-8883. doi: 10.1021/ja9015765

    14. [14]

      Wei H., Chai S. Z., Hu N. T., Yang Z., Wei L. M., Wang L.. The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity[J]. Chem. Commun., 2015,51:12178-12181. doi: 10.1039/C5CC04680G

    15. [15]

      Yang S., Kim J., Cho H., Kim S., Ahn W.. Facile synthesis of covalent organic frameworks COF-1 and COF-5 by sonochemical method[J]. RSC Adv., 2012,2:10179-10181. doi: 10.1039/c2ra21531d

    16. [16]

      Chandra S., Kandambeth S., Biswal B. P., Lukose B., Kunjir S. M., Chaudhary M., Babarao R., Heine T., Banerjee R.. Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination[J]. J. Am. Chem. Soc., 2013,135:17853-17861. doi: 10.1021/ja408121p

    17. [17]

      Biswal B. P., Chandra S., Kandambeth S., Lukose B., Heine T.. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks[J]. J. Am. Chem. Soc., 2013,135:5328-5331. doi: 10.1021/ja4017842

    18. [18]

      Jiang Y., Huang W., Wang J. Y., Wu Q., Wang H. J., Pan L. L., Liu X. K.. Green, scalable and morphology controlled synthesis of nanofibrous covalent organic frameworks and their nanohybrids through a vapor-assisted solid-state approach[J]. J. Mater. Chem. A, 2014,2:8201-8204. doi: 10.1039/c4ta00555d

    19. [19]

      Segura J. L., Mancheno M. J., Zamora F.. Covalent organic frameworks based on Schiff-base chemistry:synthesis, properties and potential applications[J]. Chem. Soc. Rev., 2016,45:5635-5671. doi: 10.1039/C5CS00878F

    20. [20]

      Kandambeth S., Shinde D. B., Panda M. K., Lukose B., Heine T., Banerjee R.. Enhancement of chemical stability and crystallinity in porphyrin-containing covalent organic frameworks by intramolecular hydrogen bonds[J]. Angew. Chem. Int. Ed., 2013,52:13052-13056. doi: 10.1002/anie.201306775

    21. [21]

      Kandambeth S., Venkatesh V., Shinde D. B., Kumari S., Halder A.. Self-templated chemically stable hollow spherical covalent organic framework[J]. Nat. Commun., 20156. doi: 10.1038/ncomms7786

    22. [22]

      Yan Y. Z., Chen L., Dai H. J., Chen Z. H., Li X., Liu X. K.. Morphosynthesis of nanostructured polyazomethines and carbon through constitutional dynamic chemistry controlled reaction induced crystallization process[J]. Polymer, 2012,53:1611-1616. doi: 10.1016/j.polymer.2012.02.025

    23. [23]

      Chen L., Chen Z. H., Li X., Huang W., Li X. J., Liu X. K.. Dynamic imine chemistry assisted reaction induced hetero-epitaxial crystallization:novel approach towards aromatic polymer/CNT nanohybrid shish-kebabs and related hybrid crystalline structures[J]. Polymer, 2013,54:1739-1745. doi: 10.1016/j.polymer.2013.01.046

    24. [24]

      Huang W., Jiang Y., Li X., Li X. J., Wang J. Y., Wu Q., Liu X. K.. Solvothermal synthesis of microporous, crystalline covalent organic framework nanofibers and their colorimetric nanohybrid structures[J]. ACS Appl. Mater. Interfaces, 2013,5:8845-8849. doi: 10.1021/am402649g

    25. [25]

      Brucks S. D., Bunck D. N., Dichtel W. R.. Functionalization of 3D covalent organic frameworks using monofunctional boronic acids[J]. Polymer, 2014,55:330-334. doi: 10.1016/j.polymer.2013.07.030

    26. [26]

      Bunck D. N., Dichtel W. R.. Internal functionalization of three-dimensional covalent organic frameworks[J]. Angew. Chem. Int. Ed., 2012,51:1885-1889. doi: 10.1002/anie.v51.8

    27. [27]

      Bunck D. N., Dichtel W. R.. Postsynthetic functionalization of 3D covalent organic frameworks[J]. Chem. Commun., 2013,49:2457-2459. doi: 10.1039/c3cc40358k

    28. [28]

      Biswal B. P., Chandra S., Kandambeth S., Lukose B., Heine T.. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks[J]. J. Am. Chem. Soc., 2013,135:5328-5331. doi: 10.1021/ja4017842

  • 加载中
    1. [1]

      Junhua WangXin LianXichuan CaoQiao ZhaoBaiyan LiXian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180

    2. [2]

      Jiahao LiGuinan ChenChunhong ChenYuanyuan LouZhihao XingTao ZhangChengtao GongYongwu Peng . Modulated synthesis of stoichiometric and sub-stoichiometric two-dimensional covalent organic frameworks for enhanced ethylene purification. Chinese Chemical Letters, 2025, 36(1): 109760-. doi: 10.1016/j.cclet.2024.109760

    3. [3]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    4. [4]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    5. [5]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    6. [6]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    7. [7]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    8. [8]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    9. [9]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    10. [10]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    11. [11]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    12. [12]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    13. [13]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    14. [14]

      Meng ShanYongmei YuMengli SunShuping YangMengqi WangBo ZhuJunbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781

    15. [15]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    16. [16]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    17. [17]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    18. [18]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    19. [19]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    20. [20]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

Metrics
  • PDF Downloads(0)
  • Abstract views(824)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return