Citation: Xian-Wu Jing, Zhi-Yu Huang, Hong-Sheng Lu, Bao-Gang Wang. CO2-sensitive Amphiphilic Triblock Copolymer Self-assembly Morphology Transition and Accelerating Drug Release from Polymeric Vesicle[J]. Chinese Journal of Polymer Science, ;2018, 36(1): 18-24. doi: 10.1007/s10118-018-2008-z shu

CO2-sensitive Amphiphilic Triblock Copolymer Self-assembly Morphology Transition and Accelerating Drug Release from Polymeric Vesicle

  • Corresponding author: Zhi-Yu Huang, hzy3019@163.com Hong-Sheng Lu, hshlu@swpu.edu.cn
  • Received Date: 25 April 2017
    Revised Date: 5 July 2017
    Accepted Date: 5 July 2017
    Available Online: 20 October 2017

  • A series of triblock copolymers, containing a CO2-switchable block poly(2-(dimethylamino)ethyl methacrylate) (PDM) block and two symmetrical hydrophilic blocks polyacrylamide (PAM), were synthesized using atom transfer radical polymerization (ATRP) method. The pH and conductivity tests showed that the triblock copolymer exhibited switchable responsiveness to CO2, i.e. a relatively low conductivity of solution could be switched on and off by bubbling and removing of CO2, and the triblock copolymer aqueous solution displayed a CO2-switchable viscosity variation. The changes were all attributed to protonation of tertiary amine groups in PDM blocks and proven by 1H-NMR. Cryogenic transmission electron microscopy and dynamic light scattering characterization demonstrated that the viscosity variation was the result of a unilamellar vesicle-network aggregate structure transition. The release of rhodamine B from the vesicles with and without CO2 stimuli showed the potential application in drug delivery domains; after CO2 bubbling, the drug release rate could be accelerated. Finally, reasonable mechanism of CO2-switchable morphology changes and CO2-induced drug release was proposed.
  • 加载中
    1. [1]

      Wang J. S., Matyjaszewski K.. Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes[J]. J. Am. Chem. Soc., 1995,117(20):127-134.

    2. [2]

      Kato M., Kamigaito M., Sawamoto M., Higashimura T.. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium(Ⅱ)/methylaluminum bis(2, 6-di-tert-butylphenoxide) initiating system:possibility of living radical polymerization[J]. Macromolecules, 1995,28(5):1721-1723. doi: 10.1021/ma00109a056

    3. [3]

      Gao Z., Varshney S. K., Wong S., Eisenberg A.. Block copolymer "crew-cut" micelles in water[J]. Macromolecules, 1994,27(26):7923-7927. doi: 10.1021/ma00104a058

    4. [4]

      Du J., O'Reilly R. K.. Advances and challenges in smart and functional polymer vesicles[J]. Soft Matter, 2009,5(19):3544-3561. doi: 10.1039/b905635a

    5. [5]

      Fernyhough C., Ryan A. J., Battaglia G.. pH controlled assembly of a polybutadiene-poly(methacrylic acid) copolymer in water:packing considerations and kinetic limitations[J]. Soft Matter, 2009,5(8):1674-1682. doi: 10.1039/b817218h

    6. [6]

      Warren N. J., Mykhaylyk O. O., Mahmood D., Ryan A. J., Armes S. P.. RAFT aqueous dispersion polymerization yields poly(ethylene glycol)-based diblock copolymer nano-objects with predictable single phase morphologies[J]. J. Am. Chem. Soc., 2014,136(3):1023-1033. doi: 10.1021/ja410593n

    7. [7]

      Groschel A. H., Walther A., Lobling T. I., Schmelz J., Hanisch A., Schmalz H., Muller A.H. E.. Facile, solution-based synthesis of soft, nanoscale Janus particles with tunable Janus balance[J]. J. Am. Chem. Soc., 2012,134(33):13850-13860. doi: 10.1021/ja305903u

    8. [8]

      Li M., Li G. L., Zhang Z., Li J., Neoh K. G., Kang E. T.. Self-assembly of pH-responsive and fluorescent comb-like amphiphilic copolymers in aqueous media[J]. Polymer, 2010,51(15):3377-3386. doi: 10.1016/j.polymer.2010.05.032

    9. [9]

      Morishima Y.. Thermally responsive polymer vesicles[J]. Angew. Chem. Int. Ed., 2007,46(9):1370-1372. doi: 10.1002/(ISSN)1521-3773

    10. [10]

      Discher B. M., Won Y. Y., Ege D. S., Lee J. C., Bates F. S., Discher D. E., Hammer D. A.. Polymersomes:tough vesicles made from diblock copolymers[J]. Science, 1999,284(5417):1143-1146. doi: 10.1126/science.284.5417.1143

    11. [11]

      Byard S. J., Williams M., McKenzie B. E., Blanazs A., Armes S. P.. Preparation and cross-linking of all-acrylamide diblock copolymer nano-objects via polymerization-induced self-assembly in aqueous solution[J]. Macromolecules, 2017,50(4):1482-1493. doi: 10.1021/acs.macromol.6b02643

    12. [12]

      Hu J., Liu S.. Responsive polymers for detection and sensing applications:current status and future developments[J]. Macromolecules, 2015,43(20):8315-8330.  

    13. [13]

      Xiong D., An Y., Li Z., Ma R., Liu Y., Wu C., Zou L., Shi L., Zhang J.. Nanometer-scaled hollow spherical micelles with hydrophilic channels and the controlled release of ibuprofen[J]. Macromol. Rapid Commum., 2008,29(23):1895-1901. doi: 10.1002/marc.v29:23

    14. [14]

      Yin H., Kang H. C., Huh K. M., Bae Y. H.. Biocompatible, pH-sensitive AB2 miktoarm polymer-based polymersomes:preparation, characterization, and acidic pH-activated nanostructural transformation[J]. J. Mater. Chem., 2012,22(36)19168. doi: 10.1039/c2jm33750a

    15. [15]

      Liu T., Zhang Y. F., Liu S. Y.. Drug and plasmid DNA co-delivery nanocarriers based on ABC type polypeptide hybrid miktoarm star copolymers[J]. Chinese J. Polym. Sci., 2013,31(6):924-937. doi: 10.1007/s10118-013-1281-0

    16. [16]

      Mura S., Nicolas J., Couvreur P.. Stimuli-responsive nanocarriers for drug delivery[J]. Nat. Mater., 2013,12(11):991-1003. doi: 10.1038/nmat3776

    17. [17]

      Su X., Cunningham M. F., Jessop P. G.. Use of a switchable hydrophobic associative polymer to create an aqueous solution of CO2-switchable viscosity[J]. Polym. Chem., 2013,5(3):940-944.  

    18. [18]

      Guo Z., Feng Y., Wang Y., Wang J., Wu Y., Zhang Y.. A novel smart polymer responsive to CO2[J]. Chem. Commun., 2011,47(33):9348-9350. doi: 10.1039/c1cc12388b

    19. [19]

      Han D., Tong X., Boissière O., Zhao Y.. General strategy for making CO2-switchable polymers[J]. ACS Macro Lett., 2011,1(1):57-61.  

    20. [20]

      Yan Q., Zhou R., Fu C., Zhang H., Yin Y., Yuan J.. CO2-responsive polymeric vesicles that breathe[J]. Angew. Chem. Int. Ed., 2011,50(21):4923-4927. doi: 10.1002/anie.v50.21

    21. [21]

      Yan Q., Wang J., Yin Y., Yuan J.. Breathing polymersomes:CO2-tuning membrane permeability for size-selective release, separation, and reaction[J]. Angew. Chem. Int. Ed., 2013,52(19):5070-5073. doi: 10.1002/anie.201300397

    22. [22]

      Yan B., Han D., Boissiere O., Ayotte P., Zhao Y.. Manipulation of block copolymer vesicles using CO2:dissociation or "breathing"[J]. Soft Matter, 2013,9(6):2011-2016. doi: 10.1039/c2sm27469h

    23. [23]

      Wang X., Jiang G., Wei Z., Li X., Tang B.. Preparation and drug release property of CO2 stimulus-sensitive poly(N, N-dimethylaminoethyl methacrylate)-b-polystyrene nanoparticles[J]. Eur. Polym. J., 2013,49(10):3165-3170. doi: 10.1016/j.eurpolymj.2013.07.024

    24. [24]

      Das S., Chatterjee D. P., Ghosh R., Das P., Nandi A. K.. Water soluble stimuli-responsive star copolymers with multiple encapsulation and release properties[J]. RSC Adv., 2016,6(11):8773-8785. doi: 10.1039/C5RA26144A

    25. [25]

      Fowler C. I., Jessop P. G., Cunningham M. F.. Aryl amidine and tertiary amine switchable surfactants and their application in the emulsion polymerization of methyl methacrylate[J]. Macromolecules, 2012,45(7):2955-2962. doi: 10.1021/ma2027484

    26. [26]

      Yuan W., Zhang J., Wei J., Zhang C., Ren J.. Synthesis and self-assembly of pH-responsive amphiphilic dendritic star-block terpolymer by the combination of ROP, ATRP and click chemistry[J]. Eur. Polym. J., 2011,47(5):949-958. doi: 10.1016/j.eurpolymj.2011.01.002

    27. [27]

      Jiang J., Shu Q., Chen X., Yang Y., Yi C., Song X., Liu X., Chen M.. Photoinduced morphology switching of polymer nanoaggregates in aqueous solution[J]. Langmuir, 2010,26(17):14247-14254. doi: 10.1021/la102771h

    28. [28]

      Yan Q., Yuan J., Cai Z., Xin Y., Kang Y., Yin Y.. Voltage-responsive vesicles based on orthogonal assembly of two homopolymers[J]. J. Am. Chem. Soc., 2010,132(27):9268-9270. doi: 10.1021/ja1027502

  • 加载中
    1. [1]

      Gaojian YangZhiyang LiRabia UsmanZhu ChenYuan LiuSong LiHui ChenYan DengYile FangNongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930

    2. [2]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    3. [3]

      Tingting HuChao ShenXueyan WangFengbo WuZhiyao He . Tumor microenvironment-sensitive polymeric nanoparticles for synergetic chemo-photo therapy. Chinese Chemical Letters, 2024, 35(11): 109562-. doi: 10.1016/j.cclet.2024.109562

    4. [4]

      Yu QinMingyang HuangChenlu HuangHannah L. PerryLinhua ZhangDunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171

    5. [5]

      Hao SunShengke LiQian LiuMinzan ZuoXueqi TianKaiya WangXiao-Yu Hu . Supramolecular prodrug vesicles for selective antimicrobial therapy employing a chemo-photodynamic strategy. Chinese Chemical Letters, 2025, 36(3): 109999-. doi: 10.1016/j.cclet.2024.109999

    6. [6]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    7. [7]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    8. [8]

      Fengjie LiuFansu MengZhenjiang YangHuan WangYuehong RenYu CaiXingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335

    9. [9]

      Hao WangMeng-Qi PanYa-Fei WangChao ChenJian XuYuan-Yuan GaoChuan-Song QiWei LiXian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581

    10. [10]

      Zheyi LiXiaoyang LiangZitong QiuZimeng LiuSiyu WangYue ZhouNan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592

    11. [11]

      Jiaxu WangJinxie ZhangXiuping WangJingying WangLina ChenJiahui CaoWei CaoSiyu LiangPing LuanKe ZhengXiao-Kun OuyangLi GaoXiaowen OuFan ZhangMeitong OuLin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697

    12. [12]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    13. [13]

      Zhixiao XiongShanni QiuYuyu WangHouna DuanYi XiaoYufang XuWeiping ZhuXuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002

    14. [14]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    15. [15]

      Xue ZhengJizhen XieXing ZhangWeiting SunHeyang ZhaoYantuan LiCheng Wang . Corrigendum to "An overview of polymeric nanomicelles in clinical trials and on the market" [Chinese Chemical Letters 32 (2021) 243-257]. Chinese Chemical Letters, 2025, 36(2): 110545-. doi: 10.1016/j.cclet.2024.110545

    16. [16]

      Shuang LiangJianjun YaoDan LiuMengli ZhouYong CuiZhaohui Wang . Tumor-responsive covalent organic polymeric nanoparticles enhancing STING activation for cancer immunotherapy. Chinese Chemical Letters, 2025, 36(3): 109856-. doi: 10.1016/j.cclet.2024.109856

    17. [17]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    18. [18]

      Shaoqing DuXinyong LiuXueping HuPeng Zhan . Targeting novel sites represents an effective strategy for combating drug resistance. Chinese Chemical Letters, 2025, 36(1): 110378-. doi: 10.1016/j.cclet.2024.110378

    19. [19]

      Qijie GongJian SongYihui SongKai TangPanpan YangXiao WangMin ZhaoLiang OuyangLi RaoBin YuPeng ZhanSaiyang ZhangXiaojin Zhang . New techniques and strategies in drug discovery (2020–2024 update). Chinese Chemical Letters, 2025, 36(3): 110456-. doi: 10.1016/j.cclet.2024.110456

    20. [20]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

Metrics
  • PDF Downloads(0)
  • Abstract views(813)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return