Citation: Tian-Qi Wang, Yang Xu, Zi-Dong He, Ming-Hong Zhou, Kun Huang. Microporous Organic Nanotube Networks from Hyper Cross-linking Core-shell Bottlebrush Copolymers for Selective Adsorption Study[J]. Chinese Journal of Polymer Science, ;2018, 36(1): 98-105. doi: 10.1007/s10118-018-2007-0 shu

Microporous Organic Nanotube Networks from Hyper Cross-linking Core-shell Bottlebrush Copolymers for Selective Adsorption Study

  • Corresponding author: Kun Huang, khuang@chem.ecnu.edu.cn
  • Received Date: 2 May 2017
    Accepted Date: 3 July 2017
    Available Online: 27 September 2017

  • We report a synthesis of microporous organic nanotube networks (MONNs) by a combination of hyper cross-linking and molecular templating of core-shell bottlebrush copolymers. The intrabrush and interbrush cross-linking of polystyrene (PS) shell layer in the core-shell bottlebrush copolymers led to the formation of micropores and large-sized nanopores (meso/macrospores) in MONNs, respectively, while selective removal of polylactide (PLA) core layer generated mesoporous tubular structure. The size of PLA-templated mesoporous cores and porous structure both at micro-and meso-scale could be controlled by simple tuning of the ratio of core/shell or the PLA core fraction in the bottlebrush precursors. Moreover, the resultant MONNs showed a highly selective adsorption capacity for the positively charged dyes on the basis of multi-porosity and carboxylate group-rich structure. In addition, MONNs also exhibited effective performance in size-selective adsorption of biomacromolecules. This work represents a new avenue for the preparation of MONNs and also provides a new application for molecular bottlebrushes in nanotechnology.
  • 加载中
    1. [1]

      Sun Q., Dai Z. F., Meng X. J., Xiao F. S.. Porous polymer catalysts with hierarchical structures[J]. Chem. Soc. Rev., 2015,44:6018-6034. doi: 10.1039/C5CS00198F

    2. [2]

      Furukawa H., Yaghi O. M.. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications[J]. J. Am. Chem. Soc., 2009,131:8875-8883. doi: 10.1021/ja9015765

    3. [3]

      Britt D., Furukawa H., Wang B., Glover T. G., Yaghi O. M.. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites[J]. Proc. Natl. Acad. Sci. U. S. A., 2009,106:20637-20640. doi: 10.1073/pnas.0909718106

    4. [4]

      McKeown N. B., Budd P. M.. Polymers of intrinsic microporosity (PIMs):organic materials for membrane separations, heterogeneous catalysis and hydrogen storage[J]. Chem. Soc. Rev., 2006,35:675-683. doi: 10.1039/b600349d

    5. [5]

      Dawson R., Cooper A. I., Adams D. J.. Nanoporous organic polymer networks[J]. Prog. Polym. Sci., 2012,37:530-563. doi: 10.1016/j.progpolymsci.2011.09.002

    6. [6]

      Cote A. P., Benin A. I., Ockwig N. W., O'Keeffe M., Matzger A. J., Yaghi O.M.. Porous, crystalline, covalent organic frameworks[J]. Science, 2005,310:1166-1170. doi: 10.1126/science.1120411

    7. [7]

      El-Kaderi H. M., Hunt J. R., Mendoza-Cortes J. L., Cote A. P., Taylor R. E., O'Keeffe M., Yaghi O. M.. Designed synthesis of 3D covalent organic frameworks[J]. Science, 2007,316:268-272. doi: 10.1126/science.1139915

    8. [8]

      Li B., Gong R., Wang W., Huang X., Zhang W., Li H., Hu C., Tan B.. A new strategy to microporous polymers:knitting rigid aromatic building blocks by external cross-linker[J]. Macromolecules, 2011,44:2410-2414. doi: 10.1021/ma200630s

    9. [9]

      Germain J., Frechet J. M., Svec F.. Nanoporous, hypercrosslinked polypyrroles:effect of crosslinking moiety on pore size and selective gas adsorption[J]. Chem. Commun., 2009:1526-1528.  

    10. [10]

      Tsyurupa M. P., Davankov V. A.. Porous structure of hypercrosslinked polystyrene:State-of-the-art mini-review[J]. React. Funct. Polym., 2006,66:768-779. doi: 10.1016/j.reactfunctpolym.2005.11.004

    11. [11]

      Liang Y., Chen L., Zhuang D., Liu H., Fu R., Zhang M., Wu D., Matyjaszewski K.. Fabrication and nanostructure control of super-hierarchical carbon materials from heterogeneous bottlebrushes[J]. Chem. Sci., 2017,8:2101-2106. doi: 10.1039/C6SC03961H

    12. [12]

      Liu H., Li S., Yang H., Liu S., Chen L., Tang Z., Fu R., Wu D.. Stepwise crosslinking:a facile yet versatile conceptual strategy to nanomorphology-persistent porous organic polymers[J]. Adv. Mater., 2017. doi: 10.1002/adma.201700723

    13. [13]

      Wang S., Zhang C., Shu Y., Jiang S., Xia Q., Chen L., Jin S., Hussain I., Cooper A. I., Tan B.. Layered microporous polymers by solvent knitting method[J]. Sci. Adv., 2017,3e1602610. doi: 10.1126/sciadv.1602610

    14. [14]

      Budd P. M., Ghanem B. S., Makhseed S., McKeown N. B., Msayib K. J., Tattershall C. E.. Polymers of intrinsic microporosity (PIMs):robust, solution-processable, organic nanoporous materials[J]. Chem. Commun., 2004:230-231.  

    15. [15]

      Jiang J. X., Su F., Trewin A., Wood C. D., Niu H., Jones J. T., Khimyak Y. Z., Cooper A. I.. Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks[J]. J. Am. Chem. Soc., 2008,130:7710-7720. doi: 10.1021/ja8010176

    16. [16]

      Tozawa T., Jones J. T., Swamy S. I., Jiang S., Adams D. J., Shakespeare S., Clowes R., Bradshaw D., Hasell T., Chong S. Y., Tang C., Thompson S., Parker J., Trewin A., Bacsa J., Slawin A. M., Steiner A., Cooper A. I.. Porous organic cages[J]. Nat. Mater., 2009,8:973-978. doi: 10.1038/nmat2545

    17. [17]

      Li B., Yang X., Xia L., Majeed M. I., Tan B.. Hollow microporous organic capsules[J]. Sci. Rep., 20133. doi: 10.1038/srep02128

    18. [18]

      Pachfule P., Kandmabeth S., Mallick A., Banerjee R.. Hollow tubular porous covalent organic framework (COF) nanostructures[J]. Chem. Commun., 2015,51:11717-11720. doi: 10.1039/C5CC04130A

    19. [19]

      Chun J., Park J. H., Kim J., Lee S. M., Kim H. J., Son S. U.. Tubular-shape evolution of microporous organic networks[J]. Chem. Mater., 2012,24:3458-3463. doi: 10.1021/cm301786g

    20. [20]

      Beers K. L., Gaynor S. G., Matyjaszewski K., Sheiko S. S., Moller M.. The synthesis of densely grafted copolymers by atom transfer radical polymerization[J]. Macromolecules, 1998,31:9413-9415. doi: 10.1021/ma981402i

    21. [21]

      Zhang M., Müller A. H. E.. Cylindrical polymer brushes[J]. J. Polym. Sci., Part A:Polym. Chem., 2005,43:3461-3481. doi: 10.1002/(ISSN)1099-0518

    22. [22]

      Sheiko S. S., Sumerlin B. S., Matyjaszewski K.. Cylindrical molecular brushes:synthesis, characterization, and properties[J]. Prog. Polym. Sci., 2008,33:759-785. doi: 10.1016/j.progpolymsci.2008.05.001

    23. [23]

      Mullner M., Yuan J. Y., Weiss S., Walther A., Fortsch M., Drechsler M., Muller A. H. E.. Water-soluble organo-silica hybrid nanotubes templated by cylindrical polymer brushes[J]. J. Am. Chem. Soc., 2010,132:16587-16592. doi: 10.1021/ja107132j

    24. [24]

      Huang K., Rzayev J.. Well-defined organic nanotubes from multicomponent bottlebrush copolymers[J]. J. Am. Chem. Soc., 2009,131:6880-6885. doi: 10.1021/ja901936g

    25. [25]

      Huang K., Rzayev J.. Charge and size selective molecular transport by amphiphilic organic nanotubes[J]. J. Am. Chem. Soc., 2011,133:16726-16729. doi: 10.1021/ja204296v

    26. [26]

      Huang K., Canterbury D. P., Rzayev J.. Organosoluble polypyrrole nanotubes from core-shell bottlebrush copolymers[J]. Chem. Commun., 2010,46:6326-6328. doi: 10.1039/c002447c

    27. [27]

      Mao H., Hillmyer M. A.. Macroscopic samples of polystyrene with ordered three-dimensional nanochannels[J]. Soft Matter, 2006,2:57-59. doi: 10.1039/B513958A

    28. [28]

      Zalusky A. S., Olayo-Valles R., Wolf J. H., Hillmyer M. A.. Ordered nanoporous polymers from polystyrene-polylactide block copolymers[J]. J. Am. Chem. Soc., 2002,124:12761-12773. doi: 10.1021/ja0278584

    29. [29]

      Xu S., Luo Y., Tan B.. Recent development of hypercrosslinked microporous organic polymers[J]. Macromol. Rapid Commun., 2013,34:471-484. doi: 10.1002/marc.v34.6

    30. [30]

      Zhang X., Shen S., Fan L.. Studies progress of preparation, properties and applications of hyper-cross-linked polystyrene networks[J]. J. Mater. Sci.., 2007,42:7621-7629. doi: 10.1007/s10853-007-1763-y

    31. [31]

      Wu D. C., Nese A., Pietrasik J., Liang Y. R., He H. K., Kruk M., Huang L., Kowalewski T., Matyjaszewski K.. Preparation of polymeric nanoscale networks from cylindrical molecular bottlebrushes[J]. ACS Nano., 2012,6:6208-6214. doi: 10.1021/nn302096d

    32. [32]

      Xu Y., Wang T., He Z., Zhong A., Huang K.. Carboxyl-containing microporous organic nanotube networks as a platform for Pd catalysts[J]. RSC Adv., 2016,6:39933-39939. doi: 10.1039/C6RA05753E

    33. [33]

      Xu Y., Wang T., He Z., Zhong A., Huang K.. Well-dispersed gold nanoparticles anchored into thiol-functionalized hierarchically porous materials for catalytic applications[J]. Micropor. Mesopor. Mat., 2016,229:1-7. doi: 10.1016/j.micromeso.2016.04.013

    34. [34]

      Lai J. T., Filla D., Shea R.. Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient raft agents[J]. Macromolecules, 2002,35:6754-6756. doi: 10.1021/ma020362m

    35. [35]

      Benaglia M., Rizzardo E., Alberti A., Guerra M.. Searching for more effective agents and conditions for the RAFT polymerization of MMA:influence of dithioester substituents, solvent, and temperature[J]. Macromolecules, 2005,38:3129-3140. doi: 10.1021/ma0480650

    36. [36]

      Sun Z., Deng Y., Wei J., Gu D., Tu B., Zhao D.. Hierarchically ordered macro-/mesoporous silica monolith:tuning macropore entrance size for size-selective adsorption of proteins[J]. Chem. Mater., 2011,23:2176-2184. doi: 10.1021/cm103704s

  • 加载中
    1. [1]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    2. [2]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    3. [3]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

    4. [4]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    5. [5]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    6. [6]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    7. [7]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    8. [8]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    9. [9]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    10. [10]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    11. [11]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    12. [12]

      Cheng ChengNasir AliJi LiuJuan QiaoMing WangLi Qi . Construction of degradable liposome-templated microporous metal-organic frameworks with commodious space for enzymes. Chinese Chemical Letters, 2024, 35(11): 109812-. doi: 10.1016/j.cclet.2024.109812

    13. [13]

      Ting ShiZiyang SongYaokang LvDazhang ZhuLing MiaoLihua GanMingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559

    14. [14]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    15. [15]

      Tianyao HeGan LiXiaoqiang XieDong HanYunyue LengQiuli ZhangWenming LiuGuobo LiHongxiang ZhangShan HuangTing HuangHonggen Peng . Design of highly active meso-zeolite enveloping Pt–Ni bimetallic catalysts for degradation of toluene. Chinese Chemical Letters, 2025, 36(4): 110137-. doi: 10.1016/j.cclet.2024.110137

    16. [16]

      Xianchen HuJunli YangFang GaoZhiyong ZhaoSimin Liu . Highly selective [4+4] cross-photodimerization of (4a-azonia)anthracenes driven by confinement of D-A hetero-guest pair in cucurbit[10]uril host. Chinese Chemical Letters, 2025, 36(3): 109967-. doi: 10.1016/j.cclet.2024.109967

    17. [17]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    18. [18]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    19. [19]

      Mengxing LiuJing LiuHongxing ZhangJianan TaoPeiwen FanXin LvWei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994

    20. [20]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

Metrics
  • PDF Downloads(0)
  • Abstract views(829)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return