Citation: Jing Dang, Yuan-Wei Su, Wei Tian. Cyclodextrin-functionalized Ordered Porous Block Copolymer Films: Preparation and Property[J]. Chinese Journal of Polymer Science, ;2018, 36(1): 34-42. doi: 10.1007/s10118-018-2005-2 shu

Cyclodextrin-functionalized Ordered Porous Block Copolymer Films: Preparation and Property

  • Corresponding author: Wei Tian, happytw_3000@nwpu.edu.cn
  • These authors contributed equally to this work
  • Received Date: 9 May 2017
    Revised Date: 3 July 2017
    Accepted Date: 3 July 2017
    Available Online: 22 September 2017

  • Ordered porous block copolymer films (PBCFs) have attracted much attention because of their potential applications in several fields. In this paper, we first reported a non-destructive, controllable, and efficient approach for preparation of β-cyclodextrin (β-CD)-functionalized PBCFs (β-CD-PBCFs). The key point of the approach is to incorporate β-CD units into the hydrophilic segment of amphiphilic block copolymers before the preparation of films. β-CD-PBCFs with structural integrity and controllable pore parameters were fabricated through combining of self-assembly and breath figure methods. And then, the effective adsorption capacity of β-CD-PBCFs toward Congo red was confirmed through UV-Vis spectroscopy and was found to be affected by β-CD content and solution pH values. Adsorption kinetic results showed that the adsorption behavior of β-CD-PBCFs was consistent with the pseudo-second-order kinetic model and the chemisorption mechanism.
  • 加载中
    1. [1]

      Corma A., Davis M. E.. Issues in the synthesis of crystalline molecular sieves:towards the crystallization of low framework-density structures[J]. ChemPhysChem., 2004,5(3):304-313. doi: 10.1002/(ISSN)1439-7641

    2. [2]

      Davis M. E.. Ordered porous materials for emerging applications[J]. Nature, 2002,417(6891):813-821. doi: 10.1038/nature00785

    3. [3]

      Toniolo R., Comisso N., Schiavon G., Bontempelli G.. Porous electrodes supported on ion-exchange membranes as electrochemical detectors for supercritical fluid chromatography[J]. Anal. Chem., 2004,76(7):2133-2137. doi: 10.1021/ac0351421

    4. [4]

      Galeazzo E., Peres H. E. M., Santos G., Peixoto N.. Gas sensitive porous silicon devices:responses to organic vapors[J]. Sensor. Actuator. B-Chem., 2003,93(1):384-390.  

    5. [5]

      Jackson E. A., Hillmeyer M. A.. Nanoporous membranes derived from block copolymers:from drug delivery to water filtration[J]. ACS Nano, 2010,4(7):3548-3553. doi: 10.1021/nn1014006

    6. [6]

      de Boer B., Stalmach U., Nijland H., Hadziioannou G.. Microporous honeycomb-structured films of semiconducting block copolymers and their use as patterned templates[J]. Adv. Mater., 2000,12(21):1581-1583. doi: 10.1002/(ISSN)1521-4095

    7. [7]

      Yang S., Yang J. A., Kim E. S.. Single-file diffusion of protein drugs through cylindrical nanochannels[J]. ACS Nano, 2010,4(7):3817-3822. doi: 10.1021/nn100464u

    8. [8]

      Cai T., Li M., Zhang B., Neoh K. G., Kang E. T.. Hyperbranched polycaprolactone-click-poly(N-vinylcaprolactam) amphiphilic copolymers and their applications as temperature-responsive membranes[J]. J. Mater. Chem. B, 2014,2(7):814-825. doi: 10.1039/C3TB20752H

    9. [9]

      Cai T., Li M., Neoh K. G., Kang E. T.. Surface-functionalizable membranes of polycaprolactone-click-hyperbranched polyglycerol copolymers from combined atom transfer radical polymerization, ring-opening polymerization and click chemistry[J]. J. Mater. Chem. B, 2013,1(9):1304-1315. doi: 10.1039/c2tb00273f

    10. [10]

      Cai T., Wang R., Yang W. J., Neoh K. G., Kang E. T.. Multi-functionalization of poly (vinylidene fluoride) membranes via combined "grafting from" and "grafting to" approaches[J]. Soft Matter, 2011,7(23):11133-11143. doi: 10.1039/c1sm06039b

    11. [11]

      Hillmyer M. A.. Nanoporous materials from block copolymer precursors[J]. Adv. Polym. Sci., 2005,190:137-181. doi: 10.1007/b138192

    12. [12]

      Olson D. A., Chen L., Hillmyer M. A.. Templating nanoporous polymers with ordered block copolymers[J]. Chem. Mater., 2007,20(3):869-890.  

    13. [13]

      Hamley I. W.. Nanostructure fabrication using block copolymers[J]. Nanotechnology, 2003,14(10):39-54. doi: 10.1088/0957-4484/14/10/201

    14. [14]

      Lee J. S., Hirao A., Nakahama S.. Polymerization of monomers containing functional silyl groups. 5. Synthesis of new porous membranes with functional groups[J]. Macromolecules, 1988,21(1):274-276.  

    15. [15]

      Jackson E. A., Hillmye M. A.. Nanoporous membranes derived from block copolymers:from drug delivery to water filtration[J]. ACS Nano, 2010,4(7):3548-3553. doi: 10.1021/nn1014006

    16. [16]

      Yave W., Car A., Funari S. S., Nunes S. P., Peinemann K. V.. CO2-philic polymer membrane with extremely high separation performance[J]. Macromolecules, 2009,43(1):326-333.  

    17. [17]

      Thurn-Albrecht T., Schotter J., Kastle C. A., Emley N., Shibauchi T., Krusin-Elbaum L., Guarini K., Black C. T., Tuominen M. T., Russell T. P.. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates[J]. Science, 2000,290(5499):2126-2129. doi: 10.1126/science.290.5499.2126

    18. [18]

      Liang J., Ma Y. Y., Sims S., Wu L. X.. A patterned porous polymer film for localized capture of insulin and glucose-responsive release[J]. J. Mater. Chem. B, 2015,3(7):1281-1288. doi: 10.1039/C4TB01537A

    19. [19]

      Clodt J. I., Abetz V.. Double stimuli-responsive isoporous membranes via post-modification of pH-sensitive self-assembled diblock copolymer membranes[J]. Adv. Funct. Mater., 2013,23(6):731-738. doi: 10.1002/adfm.v23.6

    20. [20]

      Connal L. A., Vestberg R., Hawker C. J., Qiao G. G.. Dramatic morphology control in the fabrication of porous polymer films[J]. Adv. Funct. Mater., 2008,18(22):3706-3714. doi: 10.1002/adfm.v18:22

    21. [21]

      Schacher F., Ulbricht M., Muller A. H. E.. Self-supporting, double stimuli-responsive porous membranes from polystyrene-block-poly(N, N-dimethylaminoethyl methacrylate) diblock copolymers[J]. Adv. Funct. Mater., 2009,19(7):1040-1045.  

    22. [22]

      Li Y., Ito T.. Surface chemical functionalization of cylindrical nanopores derived from a polystyrene-poly(methylmethacrylate) diblock copolymer via amidation[J]. Langmuir, 2008,24(16):8959-8963. doi: 10.1021/la800992f

    23. [23]

      Yamaguchi T., Ito T., Sato T., Shinbo T., Nakao S.. Development of a fast response molecular recognition ion gating membrane[J]. J. Am. Chem. Soc., 1999,121(16):4078-4079. doi: 10.1021/ja984170b

    24. [24]

      Yang J. M., Yang J. H., Huang H. T.. Chitosan/polyanion surface modification of styrene-butadiene-styrene block copolymer membrane for wound dressing[J]. Mater. Sci. Eng. C, 2014,34:140-148. doi: 10.1016/j.msec.2013.09.001

    25. [25]

      Widawski G., Rawiso M., Francois B.. Self-organized honeycomb morphology of star-polymer polystyrene films[J]. Nature, 1994,369(6479):387-389. doi: 10.1038/369387a0

    26. [26]

      Wan L. S., Li J. W., Ke B. B., Xu Z. K.. Ordered microporous membranes templated by breath figures for size-selective separation[J]. J. Am. Chem. Soc., 2012,134(1):95-98. doi: 10.1021/ja2092745

    27. [27]

      Zhu L. W., Ou Y., Wan L. S., Xu Z. K.. Polystyrenes with hydrophilic end groups:synthesis, characterization, and effects on the self-assembly of breath figure arrays[J]. J. Phys. Chem. B, 2014,118(3):845-854. doi: 10.1021/jp4114392

    28. [28]

      Chen J. Z., Yan X. Z., Zhao Q. L., Li L., Huang F. H.. Adjustable supramolecular polymer microstructures fabricated by the breath figure method[J]. Polym. Chem., 2012,3(2):458-462. doi: 10.1039/C1PY00438G

    29. [29]

      Wang W., Can D., Wang X. F., He X. H., Lin J. P., Li L., Lin S. L.. Directional photomanipulation of breath figure arrays[J]. Angew. Chem. Int. Ed., 2014,53(45):12116-12119. doi: 10.1002/anie.201407230

    30. [30]

      Chung Y. T., Ng L. Y., Mohammad A. W.. Sulfonated-polysulfone membrane surface modification by employing methacrylic acid through UV-grafting:optimization through response surface methodology approach[J]. J. Ind. Eng. Chem., 2014,20(4):1549-1557. doi: 10.1016/j.jiec.2013.07.046

    31. [31]

      Khoonsap S., Narkkun T., Ratphonsan P., Klinsrisuk S., Mnuaypanich S.. Enhancing the grafting of poly(2-hydroxyethyl methacrylate) on silica nanoparticles (SiO2-g-PHEMA) by the sequential UV-induced graft polymerization with a multiple-UV irradiation[J]. Adv. Powder Technol., 2014,25(4):1304-1310. doi: 10.1016/j.apt.2014.03.010

    32. [32]

      Qin Q., Hou Z. C., Lu X. F., Bian X. K., Chen L. F., Shen L. G., Wang S.. Microfiltration membranes prepared from poly(N-vinyl-2-pyrrolidone) grafted poly(vinylidene fluoride) synthesized by simultaneous irradiation[J]. J. Membr. Sci., 2013,427:303-310. doi: 10.1016/j.memsci.2012.09.059

    33. [33]

      Nady N., Schroen K., Franssen M. C. R., Mohy Eldin M. S., Zuilhof H., Boom R. M.. Laccase-catalyzed modification of PES membranes with 4-hydroxybenzoic acid and gallic acid[J]. J. Membr. Sci., 2012,394:69-79.  

    34. [34]

      Yang M., Xie R., Wang J. Y., Ju X. J., Yang L. H., Chu L. Y.. Gating characteristics of thermo-responsive and molecular-recognizable membranes based on poly (N-isopropylacrylamide) and β-cyclodextrin[J]. J. Membr. Sci., 2010,355(1):142-150.  

    35. [35]

      Xie R., Zhang S. B., Wang H. D., Yang M., Li P. F., Zhu X. L., Chu L. Y.. Temperature-dependent molecular-recognizable membranes based on poly (N-isopropylacrylamide) and β-cyclodextrin[J]. J. Membr. Sci., 2009,326(2):618-626. doi: 10.1016/j.memsci.2008.10.039

    36. [36]

      Yang M., Chu L. Y., Wang H. D., Xie R., Song H., Niu C. H.. A thermoresponsive membrane for chiral resolution[J]. Adv. Funct. Mater., 2008,18(4):652-663. doi: 10.1002/(ISSN)1616-3028

    37. [37]

      Schofield W. C. E., Bain C. D., Badyal J. P. S.. Cyclodextrin-functionalized hierarchical porous architectures for high-throughput capture and release of organic pollutants from wastewater[J]. Chem. Mater., 2012,24(9):1645-1653. doi: 10.1021/cm300552k

    38. [38]

      Sun H. L., Meng F. H., Cheng R., Deng C., Zhong Z. Y.. Reduction and pH dual-bioresponsive crosslinked polymersomes for efficient intracellular delivery of proteins and potent induction of cancer cell apoptosis[J]. Acta Biomater., 2014,10(5):2159-2168. doi: 10.1016/j.actbio.2014.01.010

    39. [39]

      Alsbaiee A., Smith B. J., Xiao L. L., Ling Y. H., Helbling D. E., Dichtel W. R.. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer[J]. Nature, 2016,529(7585):190-194.  

    40. [40]

      Skey J., O'Reilly R. K.. Facile one pot synthesis of a range of reversible addition-fragmentation chain transfer (RAFT) agents[J]. Chem. Commun., 2008(35):4183-4185. doi: 10.1039/b804260h

    41. [41]

      Liu Y. Y., Fan X. D., Gao L.. Synthesis and characterization of β-cyclodextrin based functional monomers and its copolymers with N-isopropylacrylamide[J]. Macromol. Biosci., 2003,3(12):715-719. doi: 10.1002/(ISSN)1616-5195

    42. [42]

      Callies M., Quéré D.. On water repellency[J]. Soft Matter, 2005,1(1):55-61. doi: 10.1039/b501657f

    43. [43]

      Barthlott W., Neinhuis C.. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997,202(1):1-8. doi: 10.1007/s004250050096

    44. [44]

      Chatterjee S., Lee M. W., Wooa S. H.. Congo red adsorption from aqueous solutions by using chitosan hydrogel beads impregnated with nonionic or anionic surfactant[J]. Bioresource Technol., 2009,100(17):3862-3868. doi: 10.1016/j.biortech.2009.03.023

    45. [45]

      Chabani M., Amrane A., Bensmaili A.. Equilibrium sorption isotherms for nitrate on resin Amberlite IRA 400[J]. J. Hazard. Mater., 2009,165(1):27-33.  

    46. [46]

      Smith A. E., Xu X. W., Kirkland-York S. E., Savin D. A., McCormick C. L.. "Schizophrenic" self-assembly of block copolymers synthesized via aqueous raft polymerization:from micelles to vesicles[J]. Macromolecules, 2010,43(3):1210-1217. doi: 10.1021/ma902378k

    47. [47]

      Mall I. D., Srivastava V. C., Agarwal N. K.. Removal of Orange-G and methyl violet dyes by adsorption onto bagasse fly ash-kinetic study and equilibrium isotherm analyses[J]. Dyes Pigments, 2006,69(3):210-223. doi: 10.1016/j.dyepig.2005.03.013

    48. [48]

      Ho Y. S.. Review of second-order models for adsorption systems[J]. J. Hazard. Mater., 2006,136(3):681-689. doi: 10.1016/j.jhazmat.2005.12.043

    49. [49]

      Illanes C. O., Ochoa N. A., Marchese J.. Kinetic sorption of Cr(Ⅵ) into solvent impregnated porous microspheres[J]. Chem. Eng. J., 2008,136(2):92-98.  

    50. [50]

      Xiong L., Yang Y., Mai J., Sun W., Zhang C., Wei D., Chen Q.. Adsorption behavior of methylene blue onto titanate nanotubes[J]. Chem. Eng. J., 2010,156(2):313-320. doi: 10.1016/j.cej.2009.10.023

    51. [51]

      Ho Y. S., McKay G.. Pseudo-second order model for sorption processes[J]. Process Biochem., 1999,34(5):451-465. doi: 10.1016/S0032-9592(98)00112-5

  • 加载中
    1. [1]

      Qinwei LuJinjie LuJuying LeiXubiao LuoYanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017

    2. [2]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    3. [3]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    4. [4]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    5. [5]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    6. [6]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    7. [7]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    8. [8]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    9. [9]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    10. [10]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    11. [11]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    12. [12]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    13. [13]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    14. [14]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    15. [15]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    16. [16]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    17. [17]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    18. [18]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    19. [19]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    20. [20]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

Metrics
  • PDF Downloads(0)
  • Abstract views(856)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return