Citation: Mehdi Mahmoudian, Peyman Gozali Balkanloo, Ehsan Nozad. A Facile Method for Dye and Heavy Metal Elimination by pH Sensitive Acid Activated Montmorillonite/Polyethersulfone Nanocomposite Membrane[J]. Chinese Journal of Polymer Science, ;2018, 36(1): 49-57. doi: 10.1007/s10118-018-2004-3 shu

A Facile Method for Dye and Heavy Metal Elimination by pH Sensitive Acid Activated Montmorillonite/Polyethersulfone Nanocomposite Membrane

  • Corresponding author: Mehdi Mahmoudian, m.mahmoudian@urmia.ac.ir
  • Received Date: 29 May 2017
    Revised Date: 3 July 2017
    Accepted Date: 3 July 2017
    Available Online: 16 November 2017

  • Modified clay/polyethersulfone (PES) mixed matrix membranes (MMMs) were prepared by acid activated montmorillonite (AA-MMT) with different concentrations and used to eliminate dyes and remove heavy metals from aqueous solution. The morphology and physiochemical properties of prepared clay nanoparticles and MMMs were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), enegy dispersive X-ray (EDX) spectroscopy, Brunauer-Emmett-Teller (BET) analysis, atomic force microscopy (AFM), contact angle measurement and fouling studies. The filtration study showed that removal of dyes and heavy metals was strongly dependent on pH so that dyes with positive and negative charges showed different separation efficiency in acidic and alkaline conditions. The modified membranes possessed better heavy metal removal in acidic and alkaline pHs. When the rejection of heavy metals was measured in an alkaline environment, it was observed that the rejection had a great increase compared to the neutral values for Zn2+ and Ni2+ ions, while rejection of Cu2+ and Cd2+ did not undergo significant changes. So it can be concluded that modified membranes show good selectivity for elimination of Zn2+ and Ni2+ ions with respect to other cations.
  • 加载中
    1. [1]

      Mbareck C., Nguyen Q. T., Alaoui O. T., Barillier D.. Elaboration, characterization and application of polysulfone and polyacrylic acid blends as ultrafiltration membranes for removal of some heavy metals from wate[J]. J. Hazard. Mater., 2009,171(1):93-101.  

    2. [2]

      Peter-Varbanets M., Zurbrügg C., Swartz C., Pronk W.. Decentralized systems for potable water and the potential of membrane technology[J]. Water Res., 2009,43(2):245-265. doi: 10.1016/j.watres.2008.10.030

    3. [3]

      Sikdar S. K., Grosse D., Rogut I.. Membrane technologies for remediating contaminated soils:a critical review[J]. J. Membr. Sci., 1998,151(1):75-85. doi: 10.1016/S0376-7388(98)00189-6

    4. [4]

      Sato Y., Kang M., Kamei T., Magara Y.. Performance of nanofiltration for arsenic removal[J]. Water Res., 2002,36(13):3371-3377. doi: 10.1016/S0043-1354(02)00037-4

    5. [5]

      Yin J., Deng B.. Polymer-matrix nanocomposite membranes for water treatment[J]. J. Membr. Sci., 2015,479:256-275. doi: 10.1016/j.memsci.2014.11.019

    6. [6]

      Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A.. Electric field effect in atomically thin carbon films[J]. Science, 2004,306(5696):666-669. doi: 10.1126/science.1102896

    7. [7]

      Ran F., Nie S., Zhao W., Li J., Su B., Sun S., Zhao C.. Biocompatibility of modified polyethersulfone membranes by blending an amphiphilic triblock co-polymer of poly(vinyl pyrrolidone)-b-poly(methyl methacrylate)-b-poly(vinyl pyrrolidone)[J]. Acta Bio., 2011,7(9):3370-3381. doi: 10.1016/j.actbio.2011.05.026

    8. [8]

      Li D., Mueller M. B., Gilje S., Kaner R. B., Wallace G. G.. Processable aqueous dispersions of graphene nanosheets[J]. Nat. Nanotechnol., 2008,3:101-105. doi: 10.1038/nnano.2007.451

    9. [9]

      Zhao W., Huang J., Fang B., Nie S., Yi N., Su B., Li H., Zhao C.. Modification of polyethersulfone membrane by blending semi-interpenetrating network polymeric nanoparticles[J]. J. Membr. Sci., 2011,369(1):258-266.  

    10. [10]

      Duan L., Zhao Q., Liu J., Zhang Y.. Antibacterial behavior of halloysite nanotubes decorated with copper nanoparticles in a novel mixed matrix membrane for water purification[J]. Environ. Sci.:Water Res. Technol., 2015,1(6):874-881. doi: 10.1039/C5EW00140D

    11. [11]

      Zhao Q., Hou J., Shen J., Liu J., Zhang Y.. Long-lasting antibacterial behavior of a novel mixed matrix water purification membrane[J]. J. Mater. Chem. A, 2015,3(36):18696-18705. doi: 10.1039/C5TA06013C

    12. [12]

      Zhao Q., Liu C., Liu J., Zhang Y.. Development of a novel polyethersulfone ultrafiltration membrane with antibacterial activity and high flux containing halloysite nanotubes loaded with lysozyme[J]. RSC Adv., 2015,5(48):38646-38653. doi: 10.1039/C5RA05062F

    13. [13]

      Liang C. Y., Uchytil P., Petrychkovych R., Lai Y. C., Friess K., Sipek M., Reddya M. M., Suen S. Y.. A comparison on gas separation between PES (polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO2 mixed matrix membranes[J]. Sep. Purif. Technol., 2012,92:57-63. doi: 10.1016/j.seppur.2012.03.016

    14. [14]

      Daraei P., Madaeni S. S., Salehi E., Ghaemic N., Sadeghi Gharid H., Khadivif M. A., Rostami E.. Novel thin film composite membrane fabricated by mixed matrix nanoclay/chitosan on PVDF microfiltration support:preparation, characterization and performance in dye removal[J]. J. Membr. Sci., 2013,436:97-108. doi: 10.1016/j.memsci.2013.02.031

    15. [15]

      Zulhairun A. K., Ismail A. F., Matsuura T., Abdullah M. S., Mustafa A.. Asymmetric mixed matrix membrane incorporating organically modified clay particle for gas separation[J]. Chem. Eng. J., 2014,241:495-503. doi: 10.1016/j.cej.2013.10.042

    16. [16]

      Zatta L., Ramos L. P., Wypych F.. Acid-activated montmorillonites as heterogeneous catalysts for the esterification of lauric acid acid with methanol[J]. Appl. Clay Sci., 2013,80:236-244.  

    17. [17]

      Babaki H., Salem A., Jafarizad A.. Kinetic model for the isothermal activation of bentonite by sulfuric acid[J]. Mater. Chem. Phys., 2008,108(2):263-268.  

    18. [18]

      Wang T. H., Liu T. Y., Wu D. C., Li M. H., Chen J. R., Teng S. P.. Performance of phosphoric acid activated montmorillonite as buffer materials for radioactive waste repository[J]. J. Hazard. Mater., 2010,173(1):335-342.  

    19. [19]

      Bhattacharyya K. G., Gupta S. S. M.. Influence of acid activation on adsorption of Ni(Ⅱ) and Cu(Ⅱ) on kaolinite and montmorillonite:kinetic and thermodynamic study[J]. Chem. Eng. J., 2008,136(1):1-13. doi: 10.1016/j.cej.2007.03.005

    20. [20]

      Guo X., Yao Y., Yin G., Kang Y., Luo Y., Zhuo L.. Preparation of decolorizing ceramsites for printing and dyeing wastewater with acid and base treated clay[J]. Appl. Clay Sci., 2008,40(1):20-26.  

    21. [21]

      Bharadwaj S. K., Boruah P. K., Gogoi P. K.. Phosphoric acid modified montmorillonite clay:a new heterogeneous catalyst for nitration of arenes[J]. Catal. Commun., 2014,57:124-128. doi: 10.1016/j.catcom.2014.08.019

    22. [22]

      Kumar M., Gholamvand Z., Morrissey A., Nolan K., Ulbricht M., Lawler J.. Preparation and characterization of low fouling novel hybrid ultrafiltration membranes based on the blends of GO-TiO2 nanocomposite and polysulfone for humic acid removal[J]. J. Membr. Sci., 2016,506:38-49. doi: 10.1016/j.memsci.2016.02.005

    23. [23]

      Ma Y., Shi F., Wang Z., Wu M., Ma J., Gao C.. Preparation and characterization of PSf/clay nanocomposite membranes with PEG 400 as a pore forming additive[J]. Desalination, 2012,286:131-137. doi: 10.1016/j.desal.2011.10.040

    24. [24]

      Abdullah N., Gohari R. J., Yusof N., Ismaila A. F., Juhanaa J., Laua W. J., Matsuura T.. Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane:preparation, characterization and its adsorptive removal of lead(Ⅱ) from aqueous solution[J]. Chem. Eng. J., 2016,289:28-37. doi: 10.1016/j.cej.2015.12.081

    25. [25]

      Barth C., Gonçalves M. C., Pires A. T. N., Roeder J., Wolf B. A.. Asymmetric polysulfone and polyethersulfone membranes:effects of thermodynamic conditions during formation on their performance[J]. J. Membr. Sci., 2000,169(2):287-299. doi: 10.1016/S0376-7388(99)00344-0

    26. [26]

      Zinadini S., Vatanpour V., Zinatizadeh A. A., Rahimi M., Rahimi Z., Kian M.. Preparation and characterization of antifouling graphene oxide/polyethersulfone ultrafiltration membrane:application in MBR for dairy wastewater treatment[J]. J. Water Pro. Eng., 2015,7:280-294. doi: 10.1016/j.jwpe.2015.07.005

    27. [27]

      Ding R., Zhang R., Li Y., Wang J., Shi B., Mao H., Dang J., Liu J.. Graphene oxide-embedded nanocomposite membrane for solvent resistant nanofiltration with enhanced rejection ability[J]. Chem. Eng. Sci., 2015,138:227-238. doi: 10.1016/j.ces.2015.08.019

    28. [28]

      Liu M., Yu S., Yong Z., Cao C.. Study on the thin-film composite nanofiltration membrane for the removal of sulfate from concentrated salt aqueous:preparation and performance[J]. J. Membr. Sci., 2008,310(1):289-295.  

    29. [29]

      Baroña G.N. B., Lim J., Jung B.. High performance thin film composite polyamide reverse osmosis membrane prepared via m-phenylenediamine and 2, 2'-benzidinedisulfonic acid[J]. Desalination, 2012,291:69-77. doi: 10.1016/j.desal.2012.02.001

    30. [30]

      Chiang Y. C., Hsub Y. Z., Ruaan R. C., Chuang C. J., Tung K. L.. Nanofiltration membranes synthesized from hyperbranched polyethyleneimine[J]. J. Membr. Sci., 2009,326(1):19-26. doi: 10.1016/j.memsci.2008.09.021

    31. [31]

      Crock C. A., Rogensues A. R., Shan W., Tarabara V. V.. Polymer nanocomposites with graphene-based hierarchical fillers as materials for multifunctional water treatment membranes[J]. Water. Res., 2013,47(12):3984-3996. doi: 10.1016/j.watres.2012.10.057

    32. [32]

      Ganesh B. M., Isloor A. M., Ismail A. F.. Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane[J]. Desalination, 2013,313:199-207. doi: 10.1016/j.desal.2012.11.037

    33. [33]

      Al-Degs Y. S., El-Barghouthi M. I., El-Sheikh A. H., Walker G. M.. Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon[J]. Dyes Pigments, 2008,77(1):16-23. doi: 10.1016/j.dyepig.2007.03.001

  • 加载中
    1. [1]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    2. [2]

      Yan ZhuJia LiuMeiheng LvTingting WangDongxiang ZhangRong ShangXin-Dong JiangJianjun DuGuiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446

    3. [3]

      Chuyu HuangZhishan LiuLinping ZhaoZuxiao ChenRongrong ZhengXiaona RaoYuxuan WeiXin ChenShiying Li . Metal-coordinated oxidative stress amplifier to suppress tumor growth combined with M2 macrophage elimination. Chinese Chemical Letters, 2024, 35(12): 109696-. doi: 10.1016/j.cclet.2024.109696

    4. [4]

      Shili WangMamitiana Roger RazanajatovoXuedong DuShunli WanXin HeQiuming PengQingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140

    5. [5]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    6. [6]

      Yinglan YuSajid HussainJianping QiLei LuoXuemei Zhang . Mechanisms and applications: Cargos transport to basolateral membranes in polarized epithelial cells. Chinese Chemical Letters, 2024, 35(12): 109673-. doi: 10.1016/j.cclet.2024.109673

    7. [7]

      Kai YeZhicheng YeChuantao WangZhilai LuoCheng LianChunyan Bao . Artificial signal transduction triggered by molecular photoisomerization in lipid membranes. Chinese Chemical Letters, 2025, 36(4): 110033-. doi: 10.1016/j.cclet.2024.110033

    8. [8]

      Husitu LinShuangkun ZhangDianfa ZhaoYongkang WangWei LiuFan YangJianjun LiuDongpeng YanZhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795

    9. [9]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    10. [10]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    11. [11]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    12. [12]

      Yunxia LiuGuandong WuLin LiYiming NiuBingsen ZhangBotao QiaoJunhu Wang . Construction of sintering-resistant gold catalysts via ascorbic-acid inducing strong metal-support interactions. Chinese Chemical Letters, 2025, 36(4): 110608-. doi: 10.1016/j.cclet.2024.110608

    13. [13]

      Sushu Zhang Yang Yang Jingyu Wang . Pyridinic nitrogen-substituted graphene membranes for exceptional CO2 capture. Chinese Journal of Structural Chemistry, 2025, 44(2): 100440-100440. doi: 10.1016/j.cjsc.2024.100440

    14. [14]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    15. [15]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    16. [16]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    17. [17]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    18. [18]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    19. [19]

      Tao LiuXuwei HanXueyi SunWeijie ZhangKe GaoRunan MinYuting TianCaixia Yin . An activated fluorescent probe to monitor NO fluctuation in Parkinson’s disease. Chinese Chemical Letters, 2025, 36(3): 110170-. doi: 10.1016/j.cclet.2024.110170

    20. [20]

      Jiayi GuoLiangxiong LingQinwei LuYi ZhouXubiao LuoYanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380

Metrics
  • PDF Downloads(0)
  • Abstract views(789)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return