Citation: Jiang-jiang Duan, Li-na Zhang. Robust and Smart Hydrogels Based on Natural Polymers[J]. Chinese Journal of Polymer Science, ;2017, 35(10): 1165-1180. doi: 10.1007/s10118-017-1983-9 shu

Robust and Smart Hydrogels Based on Natural Polymers

  • Corresponding author: Li-na Zhang, zhangln@whu.edu.cn
  • Received Date: 16 February 2017
    Revised Date: 19 March 2017
    Accepted Date: 20 March 2017

    Fund Project: the Major International (Regional) Joint Research Project of National Natural Science Foundation of China 21620102004the Major Program of National Natural Science Foundation of China 21334005

  • This review summarizes recent progress of the robust and smart hydrogels prepared from natural polymers including polysaccharides, proteins, etc. These hydrogels exhibit outstanding mechanical properties due to their nanofibrous aggregated microstructures and special crosslinking networks. Furthermore, these hydrogels show some smart stimuliresponsive behaviors triggered by pH, temperature, light, electricity and magnetism. Hopefully, these hydrogels derived from natural polymers with inherent biodegradation and biocompatibility have great application potential in the fields of biomedicine, tissue engineering, soft robots and bio-machine.

    1. [1]

      Gong, J.P., Soft Matter, 2010, 6(12):2583  doi: 10.1039/b924290b

    2. [2]

      Mukhopadhyay, P., Fujita, N., Takada, A., Kishida, T., Shirakawa, M. and Shinkai, S., Angew. Chem. Int. Ed., 2010, 49(36):6338  doi: 10.1002/anie.201001382

    3. [3]

      Ivanenko, Y.P., Poppele, R.E. and Lacquaniti, F., J. Physiol., 2004, 556(1):267  doi: 10.1113/jphysiol.2003.057174

    4. [4]

      Hammock, M.L., Chortos, A., Tee, B.C.K., Tok, J.B.H. and Bao, Z., Adv. Mater., 2013, 25(42):5997  doi: 10.1002/adma.201302240

    5. [5]

      Gan, Y., Yin, J. and Jiang, X., J. Mater. Chem. A, 2014, 2(43):18574  doi: 10.1039/C4TA03811H

    6. [6]

      Ionov, L., Mater. Today, 2014, 17(10):494  doi: 10.1016/j.mattod.2014.07.002

    7. [7]

      Takashima, Y., Hatanaka, S., Otsubo, M., Nakahata, M., Kakuta, T., Hashidzume, A., Yamaguchi, H. and Harada, A., Nat. Commun., 2012, 3:1270  doi: 10.1038/ncomms2280

    8. [8]

      Hasnat Kabir, M., Hazama, T., Watanabe, Y., Gong, J., Murase, K., Sunada, T. and Furukawa, H., J. Taiwan Inst. Chem. E, 2014, 45(6):3134  doi: 10.1016/j.jtice.2014.09.035

    9. [9]

      Sun, J.Y., Keplinger, C., Whitesides, G.M. and Suo, Z., Adv. Mater., 2014, 26(45):7608  doi: 10.1002/adma.v26.45

    10. [10]

      Kerin, A.J., Wisnom, M.R. and Adams, M.A., P. I. Mech. Eng. H, 1998, 212(4):273  doi: 10.1243/0954411981534051

    11. [11]

      Bastide, J. and Leibler, L., Macromolecules, 1988, 21(8):2647  doi: 10.1021/ma00186a058

    12. [12]

      Furukawa, H., Horie, K., Nozaki, R. and Okada, M., Phys. Rev. E, 2003, 68(3):031406  doi: 10.1103/PhysRevE.68.031406

    13. [13]

      Hassan, C.M. and Peppas, N.A., Macromolecules, 2000, 33(7):2472  doi: 10.1021/ma9907587

    14. [14]

      Okumura, Y. and Ito, K., Adv. Mater., 2001, 13(7):485  doi: 10.1002/(ISSN)1521-4095

    15. [15]

      Sakai, T., Matsunaga, T., Yamamoto, Y., Ito, C., Yoshida, R., Suzuki, S., Sasaki, N., Shibayama, M. and Chung, U.I., Macromolecules, 2008, 41(14):5379  doi: 10.1021/ma800476x

    16. [16]

      Haraguchi, K. and Takehisa, T., Adv. Mater., 2002, 14(16):1120  doi: 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9

    17. [17]

      Cui, W., Ji, J., Cai, Y.F., Li, H. and Ran, R., J. Mater. Chem. A, 2015, 3(33):17445  doi: 10.1039/C5TA04470G

    18. [18]

      Zhang, Y., Song, M., Diao, Y., Li, B., Shi, L. and Ran, R., RSC Adv., 2016, 6(113):112468  doi: 10.1039/C6RA24006B

    19. [19]

      Gong, J.P., Katsuyama, Y., Kurokawa, T. and Osada, Y., Adv. Mater., 2003, 15(14):1155  doi: 10.1002/adma.200304907

    20. [20]

      Hu, J., Kurokawa, T., Nakajima, T., Sun, T.L., Suekama, T., Wu, Z.L., Liang, S.M. and Gong, J.P., Macromolecules, 2012, 45(23):9445  doi: 10.1021/ma301933x

    21. [21]

      Sun, T.L., Kurokawa, T., Kuroda, S., Ihsan, A.B., Akasaki, T., Sato, K., Haque, M.A., Nakajima, T. and Gong, J.P., Nat. Mater., 2013, 12(10):932  doi: 10.1038/nmat3713

    22. [22]

      Zhao, Y., Nakajima, T., Yang, J.J., Kurokawa, T., Liu, J., Lu, J., Mizumoto, S., Sugahara, K., Kitamura, N. and Yasuda, K., Adv. Mater., 2014, 26(3):436  doi: 10.1002/adma.201303387

    23. [23]

      Ladet, S., David, L. and Domard, A., Nature, 2008, 452(7183):76  doi: 10.1038/nature06619

    24. [24]

      Shen, W., Zhang, K., Kornfield, J.A. and Tirrell, D.A., Nat. Mater., 2006, 5(2):153  doi: 10.1038/nmat1573

    25. [25]

      Chang, C., Duan, B., Cai, J. and Zhang, L., Eur. Polym. J., 2010, 46(1):92  doi: 10.1016/j.eurpolymj.2009.04.033

    26. [26]

      Murakami, K., Aoki, H., Nakamura, S., Nakamura, S., Takikawa, M., Hanzawa, M., Kishimoto, S., Hattori, H., Tanaka, Y. and Kiyosawa, T., Biomaterials, 2010, 31(1):83  doi: 10.1016/j.biomaterials.2009.09.031

    27. [27]

      Zheng, W.J., An, N., Yang, J.H., Zhou, J. and Chen, Y.M., ACS Appl. Mater. Interfaces, 2015, 7(3):1758  doi: 10.1021/am507339r

    28. [28]

      Chen, Q., Zhu, L., Zhao, C., Wang, Q. and Zheng, J., Adv. Mater., 2013, 25(30):4171  doi: 10.1002/adma.201300817

    29. [29]

      Guo, H., Zhang, J., Xu, T., Zhang, Z., Yao, J. and Shao, Z., Biomacromolecules, 2013, 14(8):2733  doi: 10.1021/bm4005645

    30. [30]

      Cai, J., Zhang, L., Liu, S., Liu, Y., Xu, X., Chen, X., Chu, B., Guo, X., Xu, J. and Cheng, H., Macromolecules, 2008, 41(23):9345  doi: 10.1021/ma801110g

    31. [31]

      Chang, C., Chen, S. and Zhang, L., J. Mater. Chem., 2011, 21(11):3865  doi: 10.1039/c0jm03075a

    32. [32]

      Fang, Y., Duan, B., Lu, A., Liu, M., Liu, H., Xu, X. and Zhang, L., Biomacromolecules, 2015, 16(4):1410  doi: 10.1021/acs.biomac.5b00195

    33. [33]

      Duan, J., Liang, X., Cao, Y., Wang, S. and Zhang, L., Macromolecules, 2015, 48(8):2706  doi: 10.1021/acs.macromol.5b00117

    34. [34]

      He, M., Wang, Z., Cao, Y., Zhao, Y., Duan, B., Chen, Y., Xu, M. and Zhang, L., Biomacromolecules, 2014, 15(9):3358  doi: 10.1021/bm500827q

    35. [35]

      Xu, S., Lin, Y., Huang, J., Li, Z., Xu, X. and Zhang, L., J. Mater. Chem. A, 2013, 1(13):4198  doi: 10.1039/c3ta00050h

    36. [36]

      Duan, B., Zheng, X., Xia, Z., Fan, X., Guo, L., Liu, J., Wang, Y., Ye, Q. and Zhang, L., Angew. Chem. Int. Ed., 2015, 54(17):5152  doi: 10.1002/anie.v54.17

    37. [37]

      Fengel, D. and Wegener, G. , "Wood: chemistry, ultrastructure, reactions", Walter de Gruyter, 1984, p. 613

    38. [38]

      Khalil, H.A., Davoudpour, Y., Islam, M.N., Mustapha, A., Sudesh, K., Dungani, R. and Jawaid, M., Carbohyd. Polym., 2014, 99:649  doi: 10.1016/j.carbpol.2013.08.069

    39. [39]

      Ifuku, S., Nogi, M., Abe, K., Yoshioka, M., Morimoto, M., Saimoto, H. and Yano, H., Biomacromolecules, 2009, 10(6):1584  doi: 10.1021/bm900163d

    40. [40]

      Raabe, D., Romano, P., Sachs, C., Fabritius, H., Al-Sawalmih, A., Yi, S.B., Servos, G. and Hartwig, H., Mater. Sci. Eng. A, 2006, 421(1):143

    41. [41]

      Luo, K., Yang, Y. and Shao, Z., Adv. Funct. Mater., 2016, 26(6):872  doi: 10.1002/adfm.v26.6

    42. [42]

      Li, Z., Zheng, Z., Yang, Y., Fang, G., Yao, J., Shao, Z. and Chen, X., ACS Sustain. Chem. Eng., 2016, 4(3):1500  doi: 10.1021/acssuschemeng.5b01463

    43. [43]

      Gong, J.P., Science, 2014, 344(6):180

    44. [44]

      Yu, Q.M., Tanaka, Y., Furukawa, H., Kurokawa, T. and Gong, J.P., Macromolecules, 2009, 42(12):3852  doi: 10.1021/ma900622s

    45. [45]

      Webber, R.E., Creton, C., Brown, H.R. and Gong, J.P., Macromolecules, 2007, 40(8):2919  doi: 10.1021/ma062924y

    46. [46]

      Henderson, K.J., Zhou, T.C., Otim, K.J. and Shull, K.R., Macromolecules, 2010, 43(14):6193  doi: 10.1021/ma100963m

    47. [47]

      Dai, X., Zhang, Y., Gao, L., Bai, T., Wang, W., Cui, Y. and Liu, W., Adv. Mater., 2015, 27(23):3566  doi: 10.1002/adma.v27.23

    48. [48]

      Haque, M.A., Kurokawa, T., Kamita, G. and Gong, J.P., Macromolecules, 2011, 44(22):8916  doi: 10.1021/ma201653t

    49. [49]

      Tuncaboylu, D.C., Sari, M., Oppermann, W. and Okay, O., Macromolecules, 2011, 44(12):4997  doi: 10.1021/ma200579v

    50. [50]

      Sun, J.Y., Zhao, X., Illeperuma, W.R., Chaudhuri, O., Oh, K.H., Mooney, D.J., Vlassak, J.J. and Suo, Z., Nature, 2012, 489(7414):133  doi: 10.1038/nature11409

    51. [51]

      Xu, D., Huang, J., Zhao, D., Ding, B., Zhang, L. and Cai, J., Adv. Mater., 2016, 28(28):5844  doi: 10.1002/adma.201600448

    52. [52]

      Zhao, D., Huang, J., Zhong, Y., Li, K., Zhang, L. and Cai, J., Adv. Funct. Mater., 2016, 26(34):6279  doi: 10.1002/adfm.v26.34

    53. [53]

      Hu, J., Kurokawa, T., Hiwatashi, K., Nakajima, T., Wu, Z.L., Liang, S.M. and Gong, J.P., Macromolecules, 2012, 45:5218  doi: 10.1021/ma3003664

    54. [54]

      Hu, J., Hiwatashi, K., Kurokawa, T., Liang, S.M., Wu, Z.L. and Gong, J.P., Macromolecules, 2011, 44(19):7775  doi: 10.1021/ma2016248

    55. [55]

      Duan, J., Liang, X., Guo, J., Zhu, K. and Zhang, L., Adv. Mater., 2016, 28(36):8037  doi: 10.1002/adma.201602126

    56. [56]

      Ma, J., Lee, J., Han, S.S., Oh, K.H., Nam, K.T. and Sun, J.Y., ACS Appl. Mater. Interfaces, 2016, 8(43):29220  doi: 10.1021/acsami.6b10912

    57. [57]

      Meng, Z., Smith, M.H. and Lyon, L.A., Colloid Polym. Sci., 2009, 287(3):277  doi: 10.1007/s00396-008-1986-8

    58. [58]

      Bhattacharya, S., Eckert, F., Boyko, V. and Pich, A., Small, 2007, 3(4):650  doi: 10.1002/(ISSN)1613-6829

    59. [59]

      Haraguchi, K., Murata, K. and Takehisa, T., Macromolecules, 2011, 45(1):385

    60. [60]

      McKee, J.R., Hietala, S., Seitsonen, J., Laine, J., Kontturi, E. and Ikkala, O., ACS Macro Lett., 2014, 3(3):266  doi: 10.1021/mz400596g

    61. [61]

      Capadona, J.R., Shanmuganathan, K., Tyler, D.J., Rowan, S.J. and Weder, C., Science, 2008, 319(5868):1370  doi: 10.1126/science.1153307

    62. [62]

      Gargava, A., Arya, C. and Raghavan, S.R., ACS Appl. Mater. Interfaces, 2016, 8(28):18430  doi: 10.1021/acsami.6b04625

    63. [63]

      Sun, Y.L., Dong, W.F., Yang, R.Z., Meng, X., Zhang, L., Chen, Q.D. and Sun, H.B., Angew. Chem. Int. Ed., 2012, 51(7):1558  doi: 10.1002/anie.v51.7

    64. [64]

      Sidorenko, A., Krupenkin, T., Taylor, A., Fratzl, P. and Aizenberg, J., Science, 2007, 315(5811):487  doi: 10.1126/science.1135516

    65. [65]

      Kim, Y.S., Liu, M., Ishida, Y., Ebina, Y., Osada, M., Sasaki, T., Hikima, T., Takata, M. and Aida, T., Nat. Mater., 2015, 14(10):1002  doi: 10.1038/nmat4363

    66. [66]

      Motokawa, T., Comp. Biochem. Phys. B, 1994, 109(4):613  doi: 10.1016/0305-0491(94)90124-4

    67. [67]

      Thurmond, F. and Trotter, J., J. Exp. Biol., 1996, 199(8):1817

    68. [68]

      Wilkie, I., J. Exp. Biol., 2002, 205(2):159

    69. [69]

      Kong, N., Peng, Q. and Li, H., Adv. Funct. Mater., 2014, 24(46):7310  doi: 10.1002/adfm.v24.46

    70. [70]

      Lee, J.B., Peng, S., Yang, D., Roh, Y.H., Funabashi, H., Park, N., Rice, E.J., Chen, L., Long, R., Wu, M. and Luo, D., Nat. Nanotechnol., 2012, 7(12):816  doi: 10.1038/nnano.2012.211

    71. [71]

      Chen, S.C., Wu, Y.C., Mi, F.L., Lin, Y.H., Yu, L.C. and Sung, H.W., J. Control. Release, 2004, 96(2):285  doi: 10.1016/j.jconrel.2004.02.002

    72. [72]

      Gong, R., Li, C., Zhu, S., Zhang, Y., Du, Y. and Jiang, J., Carbohyd. Polym., 2011, 85(4):869  doi: 10.1016/j.carbpol.2011.04.011

    73. [73]

      Rafat, M., Li, F., Fagerholm, P., Lagali, N.S., Watsky, M.A., Munger, R., Matsuura, T. and Griffith, M., Biomaterials, 2008, 29(29):3960  doi: 10.1016/j.biomaterials.2008.06.017

    74. [74]

      Chang, C., He, M., Zhou, J. and Zhang, L., Macromolecules, 2011, 44(6):1642  doi: 10.1021/ma102801f

    75. [75]

      Xu, W., He, X., Zhong, M., Hu, X. and Xiao, Y., RSC Adv., 2015, 5(5):3157  doi: 10.1039/C4RA08147A

    76. [76]

      Huang, Y., Yao, M., Zheng, X., Liang, X., Su, X., Zhang, Y., Lu, A. and Zhang, L., Biomacromolecules, 2015, 16(11):3499  doi: 10.1021/acs.biomac.5b00928

    77. [77]

      Shou, K., Huang, Y., Qi, B., Hu, X., Ma, Z., Lu, A., Jian, C., Zhang, L. and Yu, A., J. Tissue. Eng. Regen. M, 2017, DOI:10.1002/term.2400  doi: 10.1002/term.2400

    78. [78]

      Wang, E., Desai, M.S. and Lee, S.W., Nano Lett., 2013, 13(6):2826  doi: 10.1021/nl401088b

    79. [79]

      Yu, C., Yuan, P., Erickson, E.M., Daly, C.M., Rogers, J.A. and Nuzzo, R.G., Soft Matter, 2015, 11(4):7953

    80. [80]

      Liu, S., Gao, G., Xiao, Y. and Fu, J., J. Mater. Chem. B, 2016, 4(19):3239  doi: 10.1039/C6TB00583G

    81. [81]

      Lee, B.P. and Konst, S., Adv. Mater., 2014, 26(21):3415  doi: 10.1002/adma.v26.21

    82. [82]

      Li, H., Go, G., Ko, S.Y., Park, J.O. and Park, S., Smart Mater. Struct., 2016, 25(2):027001  doi: 10.1088/0964-1726/25/2/027001

    83. [83]

      Bakarich, S.E., Gorkin, R. and Spinks, G.M., Macromol. Rapid Commun., 2015, 36(12):1211  doi: 10.1002/marc.v36.12

    84. [84]

      Duan, J., Liang, X., Zhu, K., Guo, J. and Zhang, L., Soft Matter, 2017, 13(2):345  doi: 10.1039/C6SM02089E

    85. [85]

      Olsson, R.T., Azizi Samir, M.A., Salazar-Alvarez, G., Belova, L., Strom, V., Berglund, L.A., Ikkala, O., Nogues, J. and Gedde, U.W., Nat. Nanotechnol., 2010, 5(8):584  doi: 10.1038/nnano.2010.155

    86. [86]

      Helminger, M., Wu, B., Kollmann, T., Benke, D., Schwahn, D., Pipich, V., Faivre, D., Zahn, D. and Cölfen, H., Adv. Funct. Mater., 2014, 24(21):3187  doi: 10.1002/adfm.201303547

    87. [87]

      Haider, H., Yang, C.H., Zheng, W.J., Yang, J.H., Wang, M.X., Yang, S., Zrinyi, M., Osada, Y., Suo, Z., Zhang, Q., Zhou, J. and Chen, Y.M., Soft Matter, 2015, 11(42):8253  doi: 10.1039/C5SM01487E

    88. [88]

      Shi, X., Zhang, L., Cai, J., Cheng, G., Zhang, H., Li, J. and Wang, X., Macromolecules, 2011, 44(12):4565  doi: 10.1021/ma2009904

    89. [89]

      Shi, X., Hu, Y., Tu, K., Zhang, L., Wang, H., Xu, J., Zhang, H., Li, J., Wang, X. and Xu, M., Soft Matter, 2013, 9(42):10129  doi: 10.1039/c3sm51490k

    90. [90]

      Xue, B., Qin, M., Wang, T., Wu, J., Luo, D., Jiang, Q., Li, Y., Cao, Y. and Wang, W., Adv. Funct. Mater., 2016, 26(48):9053  doi: 10.1002/adfm.v26.48

    1. [1]

      Gong, J.P., Soft Matter, 2010, 6(12):2583  doi: 10.1039/b924290b

    2. [2]

      Mukhopadhyay, P., Fujita, N., Takada, A., Kishida, T., Shirakawa, M. and Shinkai, S., Angew. Chem. Int. Ed., 2010, 49(36):6338  doi: 10.1002/anie.201001382

    3. [3]

      Ivanenko, Y.P., Poppele, R.E. and Lacquaniti, F., J. Physiol., 2004, 556(1):267  doi: 10.1113/jphysiol.2003.057174

    4. [4]

      Hammock, M.L., Chortos, A., Tee, B.C.K., Tok, J.B.H. and Bao, Z., Adv. Mater., 2013, 25(42):5997  doi: 10.1002/adma.201302240

    5. [5]

      Gan, Y., Yin, J. and Jiang, X., J. Mater. Chem. A, 2014, 2(43):18574  doi: 10.1039/C4TA03811H

    6. [6]

      Ionov, L., Mater. Today, 2014, 17(10):494  doi: 10.1016/j.mattod.2014.07.002

    7. [7]

      Takashima, Y., Hatanaka, S., Otsubo, M., Nakahata, M., Kakuta, T., Hashidzume, A., Yamaguchi, H. and Harada, A., Nat. Commun., 2012, 3:1270  doi: 10.1038/ncomms2280

    8. [8]

      Hasnat Kabir, M., Hazama, T., Watanabe, Y., Gong, J., Murase, K., Sunada, T. and Furukawa, H., J. Taiwan Inst. Chem. E, 2014, 45(6):3134  doi: 10.1016/j.jtice.2014.09.035

    9. [9]

      Sun, J.Y., Keplinger, C., Whitesides, G.M. and Suo, Z., Adv. Mater., 2014, 26(45):7608  doi: 10.1002/adma.v26.45

    10. [10]

      Kerin, A.J., Wisnom, M.R. and Adams, M.A., P. I. Mech. Eng. H, 1998, 212(4):273  doi: 10.1243/0954411981534051

    11. [11]

      Bastide, J. and Leibler, L., Macromolecules, 1988, 21(8):2647  doi: 10.1021/ma00186a058

    12. [12]

      Furukawa, H., Horie, K., Nozaki, R. and Okada, M., Phys. Rev. E, 2003, 68(3):031406  doi: 10.1103/PhysRevE.68.031406

    13. [13]

      Hassan, C.M. and Peppas, N.A., Macromolecules, 2000, 33(7):2472  doi: 10.1021/ma9907587

    14. [14]

      Okumura, Y. and Ito, K., Adv. Mater., 2001, 13(7):485  doi: 10.1002/(ISSN)1521-4095

    15. [15]

      Sakai, T., Matsunaga, T., Yamamoto, Y., Ito, C., Yoshida, R., Suzuki, S., Sasaki, N., Shibayama, M. and Chung, U.I., Macromolecules, 2008, 41(14):5379  doi: 10.1021/ma800476x

    16. [16]

      Haraguchi, K. and Takehisa, T., Adv. Mater., 2002, 14(16):1120  doi: 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9

    17. [17]

      Cui, W., Ji, J., Cai, Y.F., Li, H. and Ran, R., J. Mater. Chem. A, 2015, 3(33):17445  doi: 10.1039/C5TA04470G

    18. [18]

      Zhang, Y., Song, M., Diao, Y., Li, B., Shi, L. and Ran, R., RSC Adv., 2016, 6(113):112468  doi: 10.1039/C6RA24006B

    19. [19]

      Gong, J.P., Katsuyama, Y., Kurokawa, T. and Osada, Y., Adv. Mater., 2003, 15(14):1155  doi: 10.1002/adma.200304907

    20. [20]

      Hu, J., Kurokawa, T., Nakajima, T., Sun, T.L., Suekama, T., Wu, Z.L., Liang, S.M. and Gong, J.P., Macromolecules, 2012, 45(23):9445  doi: 10.1021/ma301933x

    21. [21]

      Sun, T.L., Kurokawa, T., Kuroda, S., Ihsan, A.B., Akasaki, T., Sato, K., Haque, M.A., Nakajima, T. and Gong, J.P., Nat. Mater., 2013, 12(10):932  doi: 10.1038/nmat3713

    22. [22]

      Zhao, Y., Nakajima, T., Yang, J.J., Kurokawa, T., Liu, J., Lu, J., Mizumoto, S., Sugahara, K., Kitamura, N. and Yasuda, K., Adv. Mater., 2014, 26(3):436  doi: 10.1002/adma.201303387

    23. [23]

      Ladet, S., David, L. and Domard, A., Nature, 2008, 452(7183):76  doi: 10.1038/nature06619

    24. [24]

      Shen, W., Zhang, K., Kornfield, J.A. and Tirrell, D.A., Nat. Mater., 2006, 5(2):153  doi: 10.1038/nmat1573

    25. [25]

      Chang, C., Duan, B., Cai, J. and Zhang, L., Eur. Polym. J., 2010, 46(1):92  doi: 10.1016/j.eurpolymj.2009.04.033

    26. [26]

      Murakami, K., Aoki, H., Nakamura, S., Nakamura, S., Takikawa, M., Hanzawa, M., Kishimoto, S., Hattori, H., Tanaka, Y. and Kiyosawa, T., Biomaterials, 2010, 31(1):83  doi: 10.1016/j.biomaterials.2009.09.031

    27. [27]

      Zheng, W.J., An, N., Yang, J.H., Zhou, J. and Chen, Y.M., ACS Appl. Mater. Interfaces, 2015, 7(3):1758  doi: 10.1021/am507339r

    28. [28]

      Chen, Q., Zhu, L., Zhao, C., Wang, Q. and Zheng, J., Adv. Mater., 2013, 25(30):4171  doi: 10.1002/adma.201300817

    29. [29]

      Guo, H., Zhang, J., Xu, T., Zhang, Z., Yao, J. and Shao, Z., Biomacromolecules, 2013, 14(8):2733  doi: 10.1021/bm4005645

    30. [30]

      Cai, J., Zhang, L., Liu, S., Liu, Y., Xu, X., Chen, X., Chu, B., Guo, X., Xu, J. and Cheng, H., Macromolecules, 2008, 41(23):9345  doi: 10.1021/ma801110g

    31. [31]

      Chang, C., Chen, S. and Zhang, L., J. Mater. Chem., 2011, 21(11):3865  doi: 10.1039/c0jm03075a

    32. [32]

      Fang, Y., Duan, B., Lu, A., Liu, M., Liu, H., Xu, X. and Zhang, L., Biomacromolecules, 2015, 16(4):1410  doi: 10.1021/acs.biomac.5b00195

    33. [33]

      Duan, J., Liang, X., Cao, Y., Wang, S. and Zhang, L., Macromolecules, 2015, 48(8):2706  doi: 10.1021/acs.macromol.5b00117

    34. [34]

      He, M., Wang, Z., Cao, Y., Zhao, Y., Duan, B., Chen, Y., Xu, M. and Zhang, L., Biomacromolecules, 2014, 15(9):3358  doi: 10.1021/bm500827q

    35. [35]

      Xu, S., Lin, Y., Huang, J., Li, Z., Xu, X. and Zhang, L., J. Mater. Chem. A, 2013, 1(13):4198  doi: 10.1039/c3ta00050h

    36. [36]

      Duan, B., Zheng, X., Xia, Z., Fan, X., Guo, L., Liu, J., Wang, Y., Ye, Q. and Zhang, L., Angew. Chem. Int. Ed., 2015, 54(17):5152  doi: 10.1002/anie.v54.17

    37. [37]

      Fengel, D. and Wegener, G. , "Wood: chemistry, ultrastructure, reactions", Walter de Gruyter, 1984, p. 613

    38. [38]

      Khalil, H.A., Davoudpour, Y., Islam, M.N., Mustapha, A., Sudesh, K., Dungani, R. and Jawaid, M., Carbohyd. Polym., 2014, 99:649  doi: 10.1016/j.carbpol.2013.08.069

    39. [39]

      Ifuku, S., Nogi, M., Abe, K., Yoshioka, M., Morimoto, M., Saimoto, H. and Yano, H., Biomacromolecules, 2009, 10(6):1584  doi: 10.1021/bm900163d

    40. [40]

      Raabe, D., Romano, P., Sachs, C., Fabritius, H., Al-Sawalmih, A., Yi, S.B., Servos, G. and Hartwig, H., Mater. Sci. Eng. A, 2006, 421(1):143

    41. [41]

      Luo, K., Yang, Y. and Shao, Z., Adv. Funct. Mater., 2016, 26(6):872  doi: 10.1002/adfm.v26.6

    42. [42]

      Li, Z., Zheng, Z., Yang, Y., Fang, G., Yao, J., Shao, Z. and Chen, X., ACS Sustain. Chem. Eng., 2016, 4(3):1500  doi: 10.1021/acssuschemeng.5b01463

    43. [43]

      Gong, J.P., Science, 2014, 344(6):180

    44. [44]

      Yu, Q.M., Tanaka, Y., Furukawa, H., Kurokawa, T. and Gong, J.P., Macromolecules, 2009, 42(12):3852  doi: 10.1021/ma900622s

    45. [45]

      Webber, R.E., Creton, C., Brown, H.R. and Gong, J.P., Macromolecules, 2007, 40(8):2919  doi: 10.1021/ma062924y

    46. [46]

      Henderson, K.J., Zhou, T.C., Otim, K.J. and Shull, K.R., Macromolecules, 2010, 43(14):6193  doi: 10.1021/ma100963m

    47. [47]

      Dai, X., Zhang, Y., Gao, L., Bai, T., Wang, W., Cui, Y. and Liu, W., Adv. Mater., 2015, 27(23):3566  doi: 10.1002/adma.v27.23

    48. [48]

      Haque, M.A., Kurokawa, T., Kamita, G. and Gong, J.P., Macromolecules, 2011, 44(22):8916  doi: 10.1021/ma201653t

    49. [49]

      Tuncaboylu, D.C., Sari, M., Oppermann, W. and Okay, O., Macromolecules, 2011, 44(12):4997  doi: 10.1021/ma200579v

    50. [50]

      Sun, J.Y., Zhao, X., Illeperuma, W.R., Chaudhuri, O., Oh, K.H., Mooney, D.J., Vlassak, J.J. and Suo, Z., Nature, 2012, 489(7414):133  doi: 10.1038/nature11409

    51. [51]

      Xu, D., Huang, J., Zhao, D., Ding, B., Zhang, L. and Cai, J., Adv. Mater., 2016, 28(28):5844  doi: 10.1002/adma.201600448

    52. [52]

      Zhao, D., Huang, J., Zhong, Y., Li, K., Zhang, L. and Cai, J., Adv. Funct. Mater., 2016, 26(34):6279  doi: 10.1002/adfm.v26.34

    53. [53]

      Hu, J., Kurokawa, T., Hiwatashi, K., Nakajima, T., Wu, Z.L., Liang, S.M. and Gong, J.P., Macromolecules, 2012, 45:5218  doi: 10.1021/ma3003664

    54. [54]

      Hu, J., Hiwatashi, K., Kurokawa, T., Liang, S.M., Wu, Z.L. and Gong, J.P., Macromolecules, 2011, 44(19):7775  doi: 10.1021/ma2016248

    55. [55]

      Duan, J., Liang, X., Guo, J., Zhu, K. and Zhang, L., Adv. Mater., 2016, 28(36):8037  doi: 10.1002/adma.201602126

    56. [56]

      Ma, J., Lee, J., Han, S.S., Oh, K.H., Nam, K.T. and Sun, J.Y., ACS Appl. Mater. Interfaces, 2016, 8(43):29220  doi: 10.1021/acsami.6b10912

    57. [57]

      Meng, Z., Smith, M.H. and Lyon, L.A., Colloid Polym. Sci., 2009, 287(3):277  doi: 10.1007/s00396-008-1986-8

    58. [58]

      Bhattacharya, S., Eckert, F., Boyko, V. and Pich, A., Small, 2007, 3(4):650  doi: 10.1002/(ISSN)1613-6829

    59. [59]

      Haraguchi, K., Murata, K. and Takehisa, T., Macromolecules, 2011, 45(1):385

    60. [60]

      McKee, J.R., Hietala, S., Seitsonen, J., Laine, J., Kontturi, E. and Ikkala, O., ACS Macro Lett., 2014, 3(3):266  doi: 10.1021/mz400596g

    61. [61]

      Capadona, J.R., Shanmuganathan, K., Tyler, D.J., Rowan, S.J. and Weder, C., Science, 2008, 319(5868):1370  doi: 10.1126/science.1153307

    62. [62]

      Gargava, A., Arya, C. and Raghavan, S.R., ACS Appl. Mater. Interfaces, 2016, 8(28):18430  doi: 10.1021/acsami.6b04625

    63. [63]

      Sun, Y.L., Dong, W.F., Yang, R.Z., Meng, X., Zhang, L., Chen, Q.D. and Sun, H.B., Angew. Chem. Int. Ed., 2012, 51(7):1558  doi: 10.1002/anie.v51.7

    64. [64]

      Sidorenko, A., Krupenkin, T., Taylor, A., Fratzl, P. and Aizenberg, J., Science, 2007, 315(5811):487  doi: 10.1126/science.1135516

    65. [65]

      Kim, Y.S., Liu, M., Ishida, Y., Ebina, Y., Osada, M., Sasaki, T., Hikima, T., Takata, M. and Aida, T., Nat. Mater., 2015, 14(10):1002  doi: 10.1038/nmat4363

    66. [66]

      Motokawa, T., Comp. Biochem. Phys. B, 1994, 109(4):613  doi: 10.1016/0305-0491(94)90124-4

    67. [67]

      Thurmond, F. and Trotter, J., J. Exp. Biol., 1996, 199(8):1817

    68. [68]

      Wilkie, I., J. Exp. Biol., 2002, 205(2):159

    69. [69]

      Kong, N., Peng, Q. and Li, H., Adv. Funct. Mater., 2014, 24(46):7310  doi: 10.1002/adfm.v24.46

    70. [70]

      Lee, J.B., Peng, S., Yang, D., Roh, Y.H., Funabashi, H., Park, N., Rice, E.J., Chen, L., Long, R., Wu, M. and Luo, D., Nat. Nanotechnol., 2012, 7(12):816  doi: 10.1038/nnano.2012.211

    71. [71]

      Chen, S.C., Wu, Y.C., Mi, F.L., Lin, Y.H., Yu, L.C. and Sung, H.W., J. Control. Release, 2004, 96(2):285  doi: 10.1016/j.jconrel.2004.02.002

    72. [72]

      Gong, R., Li, C., Zhu, S., Zhang, Y., Du, Y. and Jiang, J., Carbohyd. Polym., 2011, 85(4):869  doi: 10.1016/j.carbpol.2011.04.011

    73. [73]

      Rafat, M., Li, F., Fagerholm, P., Lagali, N.S., Watsky, M.A., Munger, R., Matsuura, T. and Griffith, M., Biomaterials, 2008, 29(29):3960  doi: 10.1016/j.biomaterials.2008.06.017

    74. [74]

      Chang, C., He, M., Zhou, J. and Zhang, L., Macromolecules, 2011, 44(6):1642  doi: 10.1021/ma102801f

    75. [75]

      Xu, W., He, X., Zhong, M., Hu, X. and Xiao, Y., RSC Adv., 2015, 5(5):3157  doi: 10.1039/C4RA08147A

    76. [76]

      Huang, Y., Yao, M., Zheng, X., Liang, X., Su, X., Zhang, Y., Lu, A. and Zhang, L., Biomacromolecules, 2015, 16(11):3499  doi: 10.1021/acs.biomac.5b00928

    77. [77]

      Shou, K., Huang, Y., Qi, B., Hu, X., Ma, Z., Lu, A., Jian, C., Zhang, L. and Yu, A., J. Tissue. Eng. Regen. M, 2017, DOI:10.1002/term.2400  doi: 10.1002/term.2400

    78. [78]

      Wang, E., Desai, M.S. and Lee, S.W., Nano Lett., 2013, 13(6):2826  doi: 10.1021/nl401088b

    79. [79]

      Yu, C., Yuan, P., Erickson, E.M., Daly, C.M., Rogers, J.A. and Nuzzo, R.G., Soft Matter, 2015, 11(4):7953

    80. [80]

      Liu, S., Gao, G., Xiao, Y. and Fu, J., J. Mater. Chem. B, 2016, 4(19):3239  doi: 10.1039/C6TB00583G

    81. [81]

      Lee, B.P. and Konst, S., Adv. Mater., 2014, 26(21):3415  doi: 10.1002/adma.v26.21

    82. [82]

      Li, H., Go, G., Ko, S.Y., Park, J.O. and Park, S., Smart Mater. Struct., 2016, 25(2):027001  doi: 10.1088/0964-1726/25/2/027001

    83. [83]

      Bakarich, S.E., Gorkin, R. and Spinks, G.M., Macromol. Rapid Commun., 2015, 36(12):1211  doi: 10.1002/marc.v36.12

    84. [84]

      Duan, J., Liang, X., Zhu, K., Guo, J. and Zhang, L., Soft Matter, 2017, 13(2):345  doi: 10.1039/C6SM02089E

    85. [85]

      Olsson, R.T., Azizi Samir, M.A., Salazar-Alvarez, G., Belova, L., Strom, V., Berglund, L.A., Ikkala, O., Nogues, J. and Gedde, U.W., Nat. Nanotechnol., 2010, 5(8):584  doi: 10.1038/nnano.2010.155

    86. [86]

      Helminger, M., Wu, B., Kollmann, T., Benke, D., Schwahn, D., Pipich, V., Faivre, D., Zahn, D. and Cölfen, H., Adv. Funct. Mater., 2014, 24(21):3187  doi: 10.1002/adfm.201303547

    87. [87]

      Haider, H., Yang, C.H., Zheng, W.J., Yang, J.H., Wang, M.X., Yang, S., Zrinyi, M., Osada, Y., Suo, Z., Zhang, Q., Zhou, J. and Chen, Y.M., Soft Matter, 2015, 11(42):8253  doi: 10.1039/C5SM01487E

    88. [88]

      Shi, X., Zhang, L., Cai, J., Cheng, G., Zhang, H., Li, J. and Wang, X., Macromolecules, 2011, 44(12):4565  doi: 10.1021/ma2009904

    89. [89]

      Shi, X., Hu, Y., Tu, K., Zhang, L., Wang, H., Xu, J., Zhang, H., Li, J., Wang, X. and Xu, M., Soft Matter, 2013, 9(42):10129  doi: 10.1039/c3sm51490k

    90. [90]

      Xue, B., Qin, M., Wang, T., Wu, J., Luo, D., Jiang, Q., Li, Y., Cao, Y. and Wang, W., Adv. Funct. Mater., 2016, 26(48):9053  doi: 10.1002/adfm.v26.48

  • 加载中
    1. [1]

      Shuaiwen LiZihui ChenFeng YangWanqing Yue . The age of vanadium-based nanozymes: Synthesis, catalytic mechanisms, regulation and biomedical applications. Chinese Chemical Letters, 2024, 35(4): 108793-. doi: 10.1016/j.cclet.2023.108793

    2. [2]

      Binhan ZhaoZheng LiLan ZhengZhichao YeYuyang YuanShanshan ZhangBo LiangTianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810

    3. [3]

      Jiaojiao LiangYouming PengZhichao XuYufei WangMenglong LiuXin LiuDi HuangYuehua WeiZengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452

    4. [4]

      Peng ChenLijuan LiangYufei ZhuZhimin XingZhenhua JiaTeck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229

    5. [5]

      Zikang HuHengjie ZhangZhengqiu LiTianbao ZhaoZhipeng GuQijuan YuanBaoshu Chen . Multifunctional photothermal hydrogels: Design principles, various functions, and promising biological applications. Chinese Chemical Letters, 2024, 35(10): 109527-. doi: 10.1016/j.cclet.2024.109527

    6. [6]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    7. [7]

      Manoj Kumar SarangiL․D PatelGoutam RathSitansu Sekhar NandaDong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381

    8. [8]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    9. [9]

      Yating ZhengYulan HuangJing LuoXuqi PengXiran GuiGang LiuYang Zhang . Supercritical fluid technology: A game-changer for biomacromolecular nanomedicine preparation and biomedical application. Chinese Chemical Letters, 2024, 35(7): 109169-. doi: 10.1016/j.cclet.2023.109169

    10. [10]

      Xiaoliu LiangChunliu HuangHui LiuHu ChenJiabao ShouHongwei ChengGang Liu . Natural hydrogel dressings in wound care: Design, advances, and perspectives. Chinese Chemical Letters, 2024, 35(10): 109442-. doi: 10.1016/j.cclet.2023.109442

    11. [11]

      Yingjie WangPeng TangWenchao TuQi GaoCuizhu WangLuying TanLixin ZhaoHongye HanLiefeng MaKouharu OtsukiWeilie XiaoWenli WangJinping LiuYong LiZhajun ZhanWei LiXianli ZhouNing Li . Highly anticipated natural diterpenoids as an important source of new drugs in 2013–2023. Chinese Chemical Letters, 2025, 36(1): 109955-. doi: 10.1016/j.cclet.2024.109955

    12. [12]

      Jiqing LiuQi DangLiting WangDejin WangLiang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277

    13. [13]

      Jialiang XUJiabin CUI . Recent biological applications of corroles: From diagnosis to therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2303-2317. doi: 10.11862/CJIC.20240245

    14. [14]

      Shengdong Sun Cheng Wang Shikuo Li . Interfacial channel design on the charge migration for photoelectrochemical applications. Chinese Journal of Structural Chemistry, 2024, 43(12): 100398-100398. doi: 10.1016/j.cjsc.2024.100398

    15. [15]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    16. [16]

      Deli ChenJiawen LiXudong XuZhaocui SunYun YangMinghui XuHanqiao LiangJunshan YangHui MengGuoxu MaJianhe Wei . Plant-microbial interactions inspired the discovery of novel sesquiterpenoid dimeric skeletons of hidden natural products from Hibiscus tiliaceus. Chinese Chemical Letters, 2024, 35(10): 109451-. doi: 10.1016/j.cclet.2023.109451

    17. [17]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    18. [18]

      Zhilong XieGuohui ZhangYa MengYefei TongJian DengHonghui LiQingqing MaShisong HanWenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584

    19. [19]

      Haobo WangFei WangYong LiuZhongxiu LiuYingjie MiaoWanhong ZhangGuangxin WangJiangtao JiQiaobao Zhang . Emerging natural clay-based materials for stable and dendrite-free lithium metal anodes: A review. Chinese Chemical Letters, 2025, 36(2): 109589-. doi: 10.1016/j.cclet.2024.109589

    20. [20]

      Zhexin ChenYuqing ShiFang ZhongKai ZhangFurong ZhangShenghong XieZhongbin ChengQian ZhouYi-You HuangHai-Bin Luo . Discovery of amentoflavone as a natural PDE4 inhibitor with anti-fibrotic effects. Chinese Chemical Letters, 2025, 36(4): 109956-. doi: 10.1016/j.cclet.2024.109956

Metrics
  • PDF Downloads(0)
  • Abstract views(848)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return