Citation: Ansuman Nayak, P.S. Rama Sreekanth, Santosh Kumar Sahu, Duryodhan Sahu. Structural Tuning of Low Band Gap Intermolecular Push/Pull Side-chain Polymers for Organic Photovoltaic Applications[J]. Chinese Journal of Polymer Science, ;2017, 35(9): 1073-1085. doi: 10.1007/s10118-017-1967-9 shu

Structural Tuning of Low Band Gap Intermolecular Push/Pull Side-chain Polymers for Organic Photovoltaic Applications

  • Corresponding author: Duryodhan Sahu, duryodhansahu18@gmail.com
  • Received Date: 6 March 2017
    Revised Date: 30 March 2017
    Accepted Date: 3 April 2017

  • A series of novel low band gap donor-acceptor (D-A) type organic co-polymers (BT-F-TPA, BT-CZ-TPA and BT-SI-TPA) consisting of electron-deficient acceptor blocks both in main chains (M1) and at the pendant (M2) were polymerized with different electron rich donor (M3-M5) blocks, i.e., 9, 9-dihexyl-9H-fluorene, N-alkyl-2, 7-carbazole, and 2, 6-dithinosilole, respectively, via Suzuki method. These polymers exhibited relatively low band gaps (1.65-1.88 eV) and broad absorption ranges (680-740 nm). Bulk heterojunction (BHJ) solar cells incorporating these polymers as electron donors, blended with[6, 6]-phenyl-C61-butyric acid methyl ester (PC61BM) or[6, 6]-phenyl-C71-butyric acid methyl ester (PC71BM) as electron-acceptors in different weight ratios were fabricated and tested under 100 mW/cm2 of AM 1.5 with white-light illumination. The photovoltaic device containing donor BT-SI-TPA and acceptor PC71BM in 1:2 weight ratio showed the best power conversion efficiency (PCE) value of 1.88%, with open circuit voltage (Voc)=0.75 V, short circuit current density (Jsc)=7.60 mA/cm2, and fill factor (FF)=33.0%.
  • 加载中
    1. [1]

      Chen, J.W. and Cao, Y., Acc. Chem. Res., 2009, 42: 1709  doi: 10.1021/ar900061z

    2. [2]

      Dou, L., You, J., Hong, Z., Xu, Z., Li, G., Street, R.A. and Yang, Y., Adv. Mater., 2013, 25: 6671

    3. [3]

      Cheng, Y.J., Yang, S.H. and Hsu, C.S., Chem. Rev., 2009, 109: 5868  doi: 10.1021/cr900182s

    4. [4]

      Park, S.H., Roy, A., Beaupre, S., Cho, S., Coates, N., Moon, J.S., Moses, D., Leclerc, M., Lee, K. and Heeger, A.J., Nat. Photon., 2009, 3: 297  doi: 10.1038/nphoton.2009.69

    5. [5]

      Chen, C.C., Chang, W.H., Yoshimura, K., Ohya, K., You, J., Gao, J., Hong, Z. and Yang, Y., Adv. Mater., 2014, 26: 5670  doi: 10.1002/adma.201402072

    6. [6]

      Krebs, F.C., Espinosa, N., Hösel, M., Søndergaard, R.R. and Jørgensen, M., Adv. Mater., 2014, 26: 29  doi: 10.1002/adma.201302031

    7. [7]

      He, Z.C., Zhong, C.M., Huang, X., Wong, W.Y., Wu, H.B., Chen, L.W., Su, S.J. and Cao, Y., Adv. Mater., 2011, 23: 4636  doi: 10.1002/adma.201103006

    8. [8]

      Li, Y., Xue, L., Xia, H., Xu, B., Wen, S. and Tian, W., J. Polym. Sci., Part A: Polym. Chem., 2008, 46: 3970  doi: 10.1002/(ISSN)1099-0518

    9. [9]

      Xue, L., He, J., Gu, X., Yang, Z., Xu, B. and Tian, W., J. Phys. Chem. C., 2009, 113: 12911

    10. [10]

      Wang, T.L., Shieh, Y.T., Yang, C.H., Chen, Y.Y., Ho, T.H. and Chen, C.H., J. Polym. Res., 2013, 20: 213  doi: 10.1007/s10965-013-0213-6

    11. [11]

      Liang, Y.Y., Xu, Z., Xia, J.B., Tsai, S.T., Wu, Y., Li, G., Ray, C. and Yu, L.P., Adv. Mater., 2010, 22: 135  doi: 10.1002/adma.v22:2

    12. [12]

      Su, M.S., Kuo, C.Y., Yuan, M.C., Jeng, U.S., Su, C.J. and Wei, K.H., Adv. Mater., 2011, 23: 3315  doi: 10.1002/adma.201101274

    13. [13]

      Blouin, N., Michaud, A., Gendron, D., Wakim, S., Blair, E., Neagu-Plesu, R., Belletete, M., Durocher, G., Tao, Y. and Leclerc, M., J. Am. Chem. Soc., 2008, 130: 742

    14. [14]

      Huang, F., Chen, K.S., Yip, H.L., Hau, S.K., Acton, O., Zhang, Y., Luo, J.D. and Jen, A.K.Y., J. Am. Chem. Soc., 2009, 131: 13886  doi: 10.1021/ja9066139

    15. [15]

      Scharber, M.C., Mühlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A.J. and Brabec, C.J., Adv. Mater., 2006, 18: 789  doi: 10.1002/(ISSN)1521-4095

    16. [16]

      Li, C., Li, Y., Wang, X., Zhang, B. and Yu, C., J. Polym. Res., 2015, 22: 96  doi: 10.1007/s10965-015-0740-4

    17. [17]

      Koster, L.J.A., Mihailetchi, V.D. and Blom, P.W.M., Appl. Phys. Lett., 2006, 88: 093511  doi: 10.1063/1.2181635

    18. [18]

      Brabec, C.J., Winder, C., Sariciftci, N.S., Hummelen, J.C., Dhanabalan, A., van Hal, P.A. and Janssen, R.A.J., Adv. Funct. Mater., 2002, 12: 709  doi: 10.1002/1616-3028(20021016)12:10<709::AID-ADFM709>3.0.CO;2-N

    19. [19]

      Halls, J.J.M., Cornil, J., dos Santos, D.A., Silbey, R., Hwang, D.H., Holmes, A.B., Brédas, J.L. and Friend, R.H., Phys. Rev. B., 1999, 60: 5721  doi: 10.1103/PhysRevB.60.5721

    20. [20]

      Hou, J., Park, M.H., Zhang, S., Yao, Y., Chen, L.M., Li, J.H. and Yang, Y., Macromolecules, 2008, 41: 6012  doi: 10.1021/ma800820r

    21. [21]

      Fu, Y., Cha, H., Lee, G.Y., Moon, B.J., Park, C.E. and Park, T., Macromolecules, 2012, 45: 3004  doi: 10.1021/ma3002438

    22. [22]

      Zhang, M., Tsao, H.N., Pisula, W., Yang, C., Mishra, A.K. and Müllen, K., J. Am. Chem. Soc., 2007, 129: 3472  doi: 10.1021/ja0683537

    23. [23]

      Li, W., Hendriks, K.H., Wienk, M.M. and Janssen, R.A.J., Acc. Chem. Res., 2016, 49: 78  doi: 10.1021/acs.accounts.5b00334

    24. [24]

      Singh. A., Dey, A., Das, D. and Iyer, P.K., ACS Appl. Mater. Interfaces, 2016, 8(17): 10904  doi: 10.1021/acsami.6b03102

    25. [25]

      Xia, Y., Zhang, H., Li, J., Tong, J., Zhang, P. and Yang, C., J. Polym. Res., 2015, 22: 633  doi: 10.1007/s10965-014-0633-y

    26. [26]

      Wang, E., Wang, M., Wang, L., Duan, C., Zhang, J., Cai, W., He, C., Wu, H. and Cao, Y., Macromolecules, 2009, 42: 4410  doi: 10.1021/ma900601y

    27. [27]

      Hou, J., Chen, H.Y., Zhang, S., Li, G. and Yang, Y., J. Am. Chem. Soc., 2008, 130: 16144  doi: 10.1021/ja806687u

    28. [28]

      Sun, D., Meng, D., Cai, Y., Fan, B., Li, Y., Jiang, W., Huo, L., Sun, Y. and Wang, Z., J. Am. Chem. Soc., 2015, 137: 11156  doi: 10.1021/jacs.5b06414

    29. [29]

      Fan, H., Zhang, Z., Li, Y. and Zhan, X., J. Polym. Sci., Part A: Polym. Chem., 2011, 49: 1462  doi: 10.1002/pola.24568

    30. [30]

      Duan, C., Cai, W., Huang, F., Zhang, J., Wang, M., Yang, T., Zhong, C., Gong, X. and Cao, Y., Macromolecules, 2010, 43: 5262  doi: 10.1021/ma100616f

    31. [31]

      Hsu, S.L., Chen, C.M. and Wei, K.H., J. Polym. Sci., Part A: Polym. Chem., 2010, 48: 5126  doi: 10.1002/pola.v48:22

    32. [32]

      Wang, H.S., Su, M.S. and Wei, K.H., J. Polym. Sci., Part A: Polym. Chem., 2010, 48: 3331  doi: 10.1002/pola.24117

    33. [33]

      Li, W., Li, Q., Liu, S., Duan, C., Ying, L., Huang, F. and Cao, Y., Sci. China Chem., 2015, 58(2): 257  doi: 10.1007/s11426-014-5275-8

    34. [34]

      Zhang, Z.G., Zhang, K.L., Liu, G., Zhu, C.X., Neoh, K.G. and Kang, E.T., Macromolecules, 2009, 42: 3104  doi: 10.1021/ma900236h

    35. [35]

      Zhang, Z.G., Liu, Y.L., Yang, Y., Hou, K.Y., Peng, B., Zhao, G.J., Zhang, M.J., Guo, X., Kang, E.T. and Li, Y.F. Macromolecules, 2010, 43: 9376  doi: 10.1021/ma101491c

    36. [36]

      Duan, C.H., Chen, K.S., Huang, F., Yip, H.L., Liu, S., Zhang, J., Jen, A.K.Y. and Cao, Y., Chem. Mater., 2010, 22: 6444  doi: 10.1021/cm1027157

    37. [37]

      Chang, Y.T., Hsu, S.L., Chen, G.Y., Su, M.H., Singh, T.A., Diau, E.W.G. and Wei, K.H., Adv. Funct. Mater., 2008, 18: 2356  doi: 10.1002/adfm.v18:16

    38. [38]

      Hou, J.H., Tan, Z.A., Yan, Y., He, Y.J., Yang, C.H. and Li, Y.F., J. Am. Chem. Soc., 2006, 128: 4911  doi: 10.1021/ja060141m

    39. [39]

      Wu, Z., Zhu, Y., Li, W., Huang, Y., Chen, J., Duan, C., Huang, F. and Cao, Y., Sci. China Chem., 2016, 59(12): 1583  doi: 10.1007/s11426-016-0203-5

    40. [40]

      Sahu, D., Padhy, H., Patra, D., Huang, J.H., Chu, C.W. and Lin, H.C., J. Polym. Sci., Part A: Polym. Chem., 2010, 48: 5812  doi: 10.1002/pola.v48:24

    41. [41]

      Lee, R.H., Chu, C.M., Shiau, S.Y., Jeng, R.J., Hwang, J.C., Liu, B.T. and Huang, C.C., J. Polym. Res., 2012, 19: 9992  doi: 10.1007/s10965-012-9992-4

    42. [42]

      Padhy, H., Huang, J.H., Sahu, D., Patra, D., Kekuda, D., Chu, C.W. and Lin, H.C., J. Polym. Sci., Part A: Polym. Chem., 2010, 48: 4823  doi: 10.1002/pola.v48:21

    43. [43]

      Lim, E., Jung, B.J. and Shim, H.K., Macromolecules, 2003, 36: 4288  doi: 10.1021/ma034168r

    44. [44]

      Liao, L. and Dai, L., Macromolecules, 2007, 40: 9406  doi: 10.1021/ma071825x

    45. [45]

      Beaujuge, P.M., Pisula, W., Tsao, H.N., Ellinger, S., Muellen, K. and Reynolds, J.R., J. Am. Chem. Soc., 2009, 131: 7514  doi: 10.1021/ja900519k

    46. [46]

      Huo, L., Chen, H.Y., Hou, J., Chen, T.L. and Yang, Y., Chem. Commun., 2009, 37(37): 5570

    47. [47]

      Patra, D., Sahu, D., Padhy, H., Kekuda, D., Chu, C.W. and Lin, H.C., Macromol. Chem. Phys., 2011, 212: 1960  doi: 10.1002/macp.v212.18

    48. [48]

      Zou, Y., Gendron, D., Neagu-Plesu, R. and Leclerc, M., Macromolecules, 2009, 42: 6361  doi: 10.1021/ma901114j

    49. [49]

      Sahu, D., Padhy, H., Patra, D., Yin, J.F., Hsu, Y.C., Lin, J.T., Lu, K.L., Wei, K.H. and Lin, H.C., Tetrahedron, 2011, 67: 303  doi: 10.1016/j.tet.2010.11.044

    50. [50]

      Chu, H.C., Sahu, D., Hsu, Y.C., Padhy, H., Patra, D., Lin, J.T., Bhattacharya, D., Lu, K.L., Wei, K.H. and Lin, H.C., Dyes. Pigms., 2012, 93: 1488  doi: 10.1016/j.dyepig.2011.09.012

    51. [51]

      de Leeuw, D.M., Simenon, M.M.J., Brown, A.R. and Einhard, R.E.F., Synth. Met., 1997, 87: 53  doi: 10.1016/S0379-6779(97)80097-5

    52. [52]

      Zheng, Q., Jung, B.J., Sun, J. and Katz, H.E., J. Am. Chem. Soc., 2010, 132: 5394  doi: 10.1021/ja909111p

    53. [53]

      Yao, Y., Shi, C.J., Li, G., Shrotriya, V., Pei, Q.B. and Yang, Y., Appl. Phys. Lett., 2006, 89: 153507  doi: 10.1063/1.2361082

    54. [54]

      Sahu, D., Tsai, C.H., Wei, H.Y., Ho, K.C., Chang, F.C. and Chu, C.W., J. Mater. Chem., 2012, 22: 7945  doi: 10.1039/c2jm16760c

    55. [55]

      Walker, B., Tamayo, A.B., Dang, X.D., Zalar, P., Seo, J.H., Garcia, A., Tantiwiwat, M. and Nguyen, T.Q., Ad. Funct. Mater., 2009, 19: 3063  doi: 10.1002/adfm.v19:19

    56. [56]

      Baek, N.S., Hau, S.K., Yip, H.L., Acton, O., Chen, K.S. and Jen, A.K.Y., Chem. Mater., 2008, 20: 5734  doi: 10.1021/cm8016424

  • 加载中
    1. [1]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    2. [2]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    3. [3]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    4. [4]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    5. [5]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    6. [6]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    7. [7]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    8. [8]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    9. [9]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    10. [10]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    11. [11]

      Yihu Ke Shuai Wang Fei Jin Guangbo Liu Zhiliang Jin Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458

    12. [12]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    13. [13]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

    14. [14]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    15. [15]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    16. [16]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    17. [17]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    18. [18]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    19. [19]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    20. [20]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

Metrics
  • PDF Downloads(0)
  • Abstract views(723)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return