Citation: Yun-zhu Wu, Zhi-huang Zhang, Xin Han, Jian Zhang, Wen-ming Zhang, Jun Yin. Affinity Switching for Lysozyme and Dual-responsive Microgels by Stopped-flow Technique:Kinetic Control and Activity Evaluation[J]. Chinese Journal of Polymer Science, ;2017, 35(8): 950-960. doi: 10.1007/s10118-017-1948-z shu

Affinity Switching for Lysozyme and Dual-responsive Microgels by Stopped-flow Technique:Kinetic Control and Activity Evaluation

  • Corresponding author: Jun Yin, yinjun@hfut.edu.cn
  • These two authors contributed equally to this work.
  • Received Date: 9 February 2017
    Revised Date: 22 February 2017
    Accepted Date: 7 March 2017

    Fund Project: the National Natural Science Foundation of China 51673058

  • The use of proteins as therapeutics in nanomedicine is an emerging research field and has developed rapidly. However, proteins are always vulnerable to renal excretion or digestion by the proteolytic system in vivo, which limits their usage to a large extent. Although biocompatible polymers have been covalently linked to proteins to protect them from recognition by the immune system and prolong their circulation time, the biological activity of them is sometimes decreased. To fill this gap, physical isolation, wrapping, or encapsulation techniques are employed. Up to now, various mature examples were reported, but the whole time scales for guest molecules loading and releasing, especially the initial rapid loading process, were rarely mentioned. Herein, a series of dual-responsive poly(N-isopropylacrylamide-co-methacrylic acid) (P(NIPAM-co-MAA)) microgels were synthesized and employed to investigate the kinetics of in situ complexation and release of lysozyme under external stimuli modulation upon a stopped-flow apparatus, which was suitable for rapid dynamic monitoring. Close inspection of the adsorption kinetics during the early stages (<50 s) revealed that the initial microgel collapse occurred within~1 s, with more rapid transitions being observed when higher lysozyme concentrations were targeted. All the dynamic traces could be well fitted with a double exponential function, suggesting a fast (τ1) and a slow (τ2) relaxation time, respectively. Then, the kinetics of releasing bound lysozyme from microgels was carried on by utilizing the pH-responsive property, and the evaluation of the activity of released lysozyme was synchronously measured in a Micrococcus lysodeikticus (M. lysodeikticus) cell suspension. The corresponding relaxation time (τ) was also calculated by fitting the recorded dynamic traces. We speculate that this work can provide basic dynamics data and theoretical basis for microgels based nanocarriers to be used for protein delivery, controlled release, and possible chemical separation.
    1. [1]

      Oya, T., Enoki, T., Grosberg, A.Y., Masamune, S., Sakiyama, T., Takeoka, Y., Tanaka, K., Wang, G.Q., Yilmaz, Y., Feld, M.S., Dasari, R. and Tanaka, T., Science, 1999, 286:1543  doi: 10.1126/science.286.5444.1543

    2. [2]

      Miyata, K., Kakizawa, Y., Nishiyama, N., Harada, A., Yamasaki, Y., Koyama, H. and Kataoka, K., J. Am. Chem. Soc., 2004, 126:2355  doi: 10.1021/ja0379666

    3. [3]

      Yoshimatsu, K., Lesel, B.K., Yonamine, Y., Beierle, J.M., Hoshino, Y. and Shea, K.J., Angew. Chem. Int. Ed., 2012, 124:2455  doi: 10.1002/ange.v124.10

    4. [4]

      Ge, Z.S. and Liu, S.Y., Chem. Soc. Rev., 2013, 42:7289  doi: 10.1039/c3cs60048c

    5. [5]

      Deng, Z.Y., Qian, Y.F., Yu, Y.Q., Liu, G.H., Hu, J.M., Zhang, G.Y. and Liu, S.Y., J. Am. Chem. Soc., 2016, 138:10452  doi: 10.1021/jacs.6b04115

    6. [6]

      Li, Z.B., Xiang, Y.H., Zhou, X.J., Nie, J.J., Peng, M. and Du, B.Y., Chinese J. Polym. Sci., 2015, 33(11):1516  doi: 10.1007/s10118-015-1694-z

    7. [7]

      Liu, J.J., Yan, Y.F. and Yao, P., Chinese J. Polym. Sci., 2011, 29(4):397  doi: 10.1007/s10118-011-1054-6

    8. [8]

      Xing, S.Y., Guan, Y. and Zhang, Y.J., Macromolecules, 2011, 44:4479  doi: 10.1021/ma200586w

    9. [9]

      Huang, N., Guan, Y., Zhu, X.X. and Zhang, Y.J., Chem. Phys. Chem., 2014, 15:1785  doi: 10.1002/cphc.v15.9

    10. [10]

      Li, L.H., Zhu, Y., Li, B. and Gao, C.Y., Langmuir, 2008, 24:13632  doi: 10.1021/la802556e

    11. [11]

      Li, Y.P., Xiao, W.W., Xiao, K., Berti, L., Luo, J., Tseng, H.P., Fung, G. and Lam, K.S., Angew. Chem. Int. Ed., 2012, 124:2918  doi: 10.1002/ange.201107144

    12. [12]

      Meng, F.H., Li, Y.L., Zhu, L., Liu, Z.Z., Cheng, R., Cui, J.H., Ji, S.J. and Zhong, Z.Y., Angew. Chem. Int. Ed., 2009, 48:9914  doi: 10.1002/anie.v48:52

    13. [13]

      Zhang, H., Mardyani, S., Chan, W.C.W. and Kumacheva, E., Biomacromolecules, 2006, 7:1568  doi: 10.1021/bm050912z

    14. [14]

      Roberts, M.J., Bentley, M.D. and Harris, J.M., Adv. Drug Delivery Rev., 2002, 54:459  doi: 10.1016/S0169-409X(02)00022-4

    15. [15]

      Cartei, F., Cartei, G., Ceschia, V., Pacor, S. and Sava, G., Curr. Therap. Res. Clin. Exp., 1991, 50:530

    16. [16]

      Tao, L., Mantovani, G., Lecolley, F. and Haddleton, D.M., J. Am. Chem. Soc., 2004, 126:13220  doi: 10.1021/ja0456454

    17. [17]

      Bontempo, D. and Maynard, H.D., J. Am. Chem. Soc., 2005, 127:6508  doi: 10.1021/ja042230+

    18. [18]

      Boyer, C., Bulmus, V., Liu, J.Q., Davis, T.P., Stenzel, M.H. and Barner-Kowollik, C., J. Am. Chem. Soc., 2007, 129:7145  doi: 10.1021/ja070956a

    19. [19]

      Heredia, K.L., Bontempo, D., Ly, T., Byers, J.T., Halstenberg, S. and Maynard, H.D., J. Am. Chem. Soc., 2005, 127:16955  doi: 10.1021/ja054482w

    20. [20]

      Tao, L., Liu, J.Q., Xu, J.T. and Davis, T.P., Org. Biomol. Chem., 2009, 7:3481  doi: 10.1039/b907061c

    21. [21]

      Kochendoerfer, G.G., Chen, S.Y., Mao, F., Cressman, S., Traviglia, S., Shao, H., Hunter, C.L., Low, D.W., Cagle, E.N., Carnevali, M., Gueriguian, V., Keogh, P.J., Porter, H., Stratton, S.M., Wiedeke, M.C., Wilken, J., Tang, J., Levy, J.J., Miranda, L.P., Crnogorac, M.M., Kalbag, S., Botti, P., Schindler-Horvat, J., Savatski, L., Adamson, J.W., Kung, A., Kent, S.B.H. and Bradburne, J.A., Science, 2003, 299:884  doi: 10.1126/science.1079085

    22. [22]

      Lindhoud, S., Voorhaar, L., Vries, R.D., Schweins, R., Stuart, M.A.C. and Norde, W., Langmuir, 2009, 25:11425  doi: 10.1021/la901591p

    23. [23]

      Ganguli, S., Yoshimoto, K., Tomita, S., Sakuma, H., Matsuoka, T., Shiraki, K. and Nagasaki, Y., J. Am. Chem. Soc., 2009, 131:6549  doi: 10.1021/ja900786z

    24. [24]

      Danial, M., Klok, H., Norde, W. and Stuart, M.A.C., Langmuir, 2007, 23:8003  doi: 10.1021/la700573j

    25. [25]

      Gummel, J., Boue, F., Deme, B. and Cousin, F., J. Phys. Chem. B, 2006, 110:24837  doi: 10.1021/jp064383k

    26. [26]

      Harada, A. and Kataoka, K., Macromolecules, 1998, 31:288  doi: 10.1021/ma971277v

    27. [27]

      Oncel, S., Uzun, L., Garipcan, B. and Denizli, A., Ind. Eng. Chem. Res., 2005, 44:7049  doi: 10.1021/ie0506318

    28. [28]

      Beierle, J.M., Yoshimatsu, K., Chou, B., Mathews, M.A.A., Lesel, B.K. and Shea, K.J., Angew. Chem. Int. Ed., 2014, 53:9275  doi: 10.1002/anie.201404881

    29. [29]

      Dupin, D., Rosselgong, J., Armes, S.P. and Routh, A., Langmuir, 2007, 23:4035  doi: 10.1021/la063278z

    30. [30]

      Yin, J., Dupin, D., Li, J.F., Armes, S.P. and Liu, S.Y., Langmuir, 2008, 24:9334  doi: 10.1021/la8014282

    31. [31]

      Tanaka, T. and Fillmore, D.J., J. Chem. Phys., 1979, 70:1214  doi: 10.1063/1.437602

    32. [32]

      Subotic, D.V. and Wu, X.Y., Ind. Eng. Chem. Res., 1997, 36:1302  doi: 10.1021/ie9604987

    33. [33]

      Zhou, S.Q. and Chu, B., J. Phys. Chem. B, 1998, 102:1364  doi: 10.1021/jp972990p

    34. [34]

      Shugar, D., Biochim. Biophys. Acta, 1952, 8:302  doi: 10.1016/0006-3002(52)90045-0

    35. [35]

      Yin, J., Shi, S.Y., Hu, J.M. and Liu, S.Y., Langmuir, 2014, 30:9551  doi: 10.1021/la501918s

    36. [36]

      Yin, J., Guan, X.F., Wang, D. and Liu, S.Y., Langmuir, 2009, 25:11367  doi: 10.1021/la901377h

    37. [37]

      Plamper, F.A., Becker, H., Lanzendorfer, M., Patel, M., Wittemann, A., Ballauf, M. and Muller, A.H.E., Macromol. Chem. Phys., 2005, 206:1813  doi: 10.1002/(ISSN)1521-3935

    38. [38]

      Olea, A.F. and Thomas, J.K., Macromolecules, 1989, 22:1165  doi: 10.1021/ma00193a029

    39. [39]

      Shibayama, M. and Nagai, K., Macromolecules, 1999, 32:7461  doi: 10.1021/ma990719v

    40. [40]

      Nakimbugwe, D., Masschalck, B., Deckers, D., Callewaert, L., Aertsen, A. and Michiels, C.W., FEMS Microbiol. Lett., 2006, 259:41  doi: 10.1111/fml.2006.259.issue-1

    1. [1]

      Oya, T., Enoki, T., Grosberg, A.Y., Masamune, S., Sakiyama, T., Takeoka, Y., Tanaka, K., Wang, G.Q., Yilmaz, Y., Feld, M.S., Dasari, R. and Tanaka, T., Science, 1999, 286:1543  doi: 10.1126/science.286.5444.1543

    2. [2]

      Miyata, K., Kakizawa, Y., Nishiyama, N., Harada, A., Yamasaki, Y., Koyama, H. and Kataoka, K., J. Am. Chem. Soc., 2004, 126:2355  doi: 10.1021/ja0379666

    3. [3]

      Yoshimatsu, K., Lesel, B.K., Yonamine, Y., Beierle, J.M., Hoshino, Y. and Shea, K.J., Angew. Chem. Int. Ed., 2012, 124:2455  doi: 10.1002/ange.v124.10

    4. [4]

      Ge, Z.S. and Liu, S.Y., Chem. Soc. Rev., 2013, 42:7289  doi: 10.1039/c3cs60048c

    5. [5]

      Deng, Z.Y., Qian, Y.F., Yu, Y.Q., Liu, G.H., Hu, J.M., Zhang, G.Y. and Liu, S.Y., J. Am. Chem. Soc., 2016, 138:10452  doi: 10.1021/jacs.6b04115

    6. [6]

      Li, Z.B., Xiang, Y.H., Zhou, X.J., Nie, J.J., Peng, M. and Du, B.Y., Chinese J. Polym. Sci., 2015, 33(11):1516  doi: 10.1007/s10118-015-1694-z

    7. [7]

      Liu, J.J., Yan, Y.F. and Yao, P., Chinese J. Polym. Sci., 2011, 29(4):397  doi: 10.1007/s10118-011-1054-6

    8. [8]

      Xing, S.Y., Guan, Y. and Zhang, Y.J., Macromolecules, 2011, 44:4479  doi: 10.1021/ma200586w

    9. [9]

      Huang, N., Guan, Y., Zhu, X.X. and Zhang, Y.J., Chem. Phys. Chem., 2014, 15:1785  doi: 10.1002/cphc.v15.9

    10. [10]

      Li, L.H., Zhu, Y., Li, B. and Gao, C.Y., Langmuir, 2008, 24:13632  doi: 10.1021/la802556e

    11. [11]

      Li, Y.P., Xiao, W.W., Xiao, K., Berti, L., Luo, J., Tseng, H.P., Fung, G. and Lam, K.S., Angew. Chem. Int. Ed., 2012, 124:2918  doi: 10.1002/ange.201107144

    12. [12]

      Meng, F.H., Li, Y.L., Zhu, L., Liu, Z.Z., Cheng, R., Cui, J.H., Ji, S.J. and Zhong, Z.Y., Angew. Chem. Int. Ed., 2009, 48:9914  doi: 10.1002/anie.v48:52

    13. [13]

      Zhang, H., Mardyani, S., Chan, W.C.W. and Kumacheva, E., Biomacromolecules, 2006, 7:1568  doi: 10.1021/bm050912z

    14. [14]

      Roberts, M.J., Bentley, M.D. and Harris, J.M., Adv. Drug Delivery Rev., 2002, 54:459  doi: 10.1016/S0169-409X(02)00022-4

    15. [15]

      Cartei, F., Cartei, G., Ceschia, V., Pacor, S. and Sava, G., Curr. Therap. Res. Clin. Exp., 1991, 50:530

    16. [16]

      Tao, L., Mantovani, G., Lecolley, F. and Haddleton, D.M., J. Am. Chem. Soc., 2004, 126:13220  doi: 10.1021/ja0456454

    17. [17]

      Bontempo, D. and Maynard, H.D., J. Am. Chem. Soc., 2005, 127:6508  doi: 10.1021/ja042230+

    18. [18]

      Boyer, C., Bulmus, V., Liu, J.Q., Davis, T.P., Stenzel, M.H. and Barner-Kowollik, C., J. Am. Chem. Soc., 2007, 129:7145  doi: 10.1021/ja070956a

    19. [19]

      Heredia, K.L., Bontempo, D., Ly, T., Byers, J.T., Halstenberg, S. and Maynard, H.D., J. Am. Chem. Soc., 2005, 127:16955  doi: 10.1021/ja054482w

    20. [20]

      Tao, L., Liu, J.Q., Xu, J.T. and Davis, T.P., Org. Biomol. Chem., 2009, 7:3481  doi: 10.1039/b907061c

    21. [21]

      Kochendoerfer, G.G., Chen, S.Y., Mao, F., Cressman, S., Traviglia, S., Shao, H., Hunter, C.L., Low, D.W., Cagle, E.N., Carnevali, M., Gueriguian, V., Keogh, P.J., Porter, H., Stratton, S.M., Wiedeke, M.C., Wilken, J., Tang, J., Levy, J.J., Miranda, L.P., Crnogorac, M.M., Kalbag, S., Botti, P., Schindler-Horvat, J., Savatski, L., Adamson, J.W., Kung, A., Kent, S.B.H. and Bradburne, J.A., Science, 2003, 299:884  doi: 10.1126/science.1079085

    22. [22]

      Lindhoud, S., Voorhaar, L., Vries, R.D., Schweins, R., Stuart, M.A.C. and Norde, W., Langmuir, 2009, 25:11425  doi: 10.1021/la901591p

    23. [23]

      Ganguli, S., Yoshimoto, K., Tomita, S., Sakuma, H., Matsuoka, T., Shiraki, K. and Nagasaki, Y., J. Am. Chem. Soc., 2009, 131:6549  doi: 10.1021/ja900786z

    24. [24]

      Danial, M., Klok, H., Norde, W. and Stuart, M.A.C., Langmuir, 2007, 23:8003  doi: 10.1021/la700573j

    25. [25]

      Gummel, J., Boue, F., Deme, B. and Cousin, F., J. Phys. Chem. B, 2006, 110:24837  doi: 10.1021/jp064383k

    26. [26]

      Harada, A. and Kataoka, K., Macromolecules, 1998, 31:288  doi: 10.1021/ma971277v

    27. [27]

      Oncel, S., Uzun, L., Garipcan, B. and Denizli, A., Ind. Eng. Chem. Res., 2005, 44:7049  doi: 10.1021/ie0506318

    28. [28]

      Beierle, J.M., Yoshimatsu, K., Chou, B., Mathews, M.A.A., Lesel, B.K. and Shea, K.J., Angew. Chem. Int. Ed., 2014, 53:9275  doi: 10.1002/anie.201404881

    29. [29]

      Dupin, D., Rosselgong, J., Armes, S.P. and Routh, A., Langmuir, 2007, 23:4035  doi: 10.1021/la063278z

    30. [30]

      Yin, J., Dupin, D., Li, J.F., Armes, S.P. and Liu, S.Y., Langmuir, 2008, 24:9334  doi: 10.1021/la8014282

    31. [31]

      Tanaka, T. and Fillmore, D.J., J. Chem. Phys., 1979, 70:1214  doi: 10.1063/1.437602

    32. [32]

      Subotic, D.V. and Wu, X.Y., Ind. Eng. Chem. Res., 1997, 36:1302  doi: 10.1021/ie9604987

    33. [33]

      Zhou, S.Q. and Chu, B., J. Phys. Chem. B, 1998, 102:1364  doi: 10.1021/jp972990p

    34. [34]

      Shugar, D., Biochim. Biophys. Acta, 1952, 8:302  doi: 10.1016/0006-3002(52)90045-0

    35. [35]

      Yin, J., Shi, S.Y., Hu, J.M. and Liu, S.Y., Langmuir, 2014, 30:9551  doi: 10.1021/la501918s

    36. [36]

      Yin, J., Guan, X.F., Wang, D. and Liu, S.Y., Langmuir, 2009, 25:11367  doi: 10.1021/la901377h

    37. [37]

      Plamper, F.A., Becker, H., Lanzendorfer, M., Patel, M., Wittemann, A., Ballauf, M. and Muller, A.H.E., Macromol. Chem. Phys., 2005, 206:1813  doi: 10.1002/(ISSN)1521-3935

    38. [38]

      Olea, A.F. and Thomas, J.K., Macromolecules, 1989, 22:1165  doi: 10.1021/ma00193a029

    39. [39]

      Shibayama, M. and Nagai, K., Macromolecules, 1999, 32:7461  doi: 10.1021/ma990719v

    40. [40]

      Nakimbugwe, D., Masschalck, B., Deckers, D., Callewaert, L., Aertsen, A. and Michiels, C.W., FEMS Microbiol. Lett., 2006, 259:41  doi: 10.1111/fml.2006.259.issue-1

  • 加载中
    1. [1]

      Huan Hu Ying Zhang Shi-Shuang Huang Zhi-Gang Li Yungui Liu Rui Feng Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395

    2. [2]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    3. [3]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    4. [4]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    5. [5]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    6. [6]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    7. [7]

      Fengyun LiZerong PeiShuting ChenGen liMengyang LiuLiqin DingJingbo LiuFeng Qiu . Multifunctional nano-herb based on tumor microenvironment for enhanced tumor therapy of gambogic acid. Chinese Chemical Letters, 2024, 35(5): 108752-. doi: 10.1016/j.cclet.2023.108752

    8. [8]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    9. [9]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    10. [10]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    11. [11]

      Yufei LiuLiang XiongBingyang GaoQingyun ShiYing WangZhiya HanZhenhua ZhangZhaowei MaLimin WangYong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932

    12. [12]

      Fanghua ZhangYuyan LiHongyan ZhangWendong LiuZhe HaoMingzheng ShaoRuizhong ZhangXiyan LiLibing Zhang . Logically integrating exo/endogenous gated DNA trackers for precise microRNA imaging via synergistic manipulation. Chinese Chemical Letters, 2025, 36(1): 109848-. doi: 10.1016/j.cclet.2024.109848

    13. [13]

      Chong LiuNanthi BolanAnushka Upamali RajapakshaHailong WangParamasivan BalasubramanianPengyan ZhangXuan Cuong NguyenFayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960

    14. [14]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

    15. [15]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    16. [16]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    17. [17]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    18. [18]

      Dan LuoJinya TianJianqiao ZhouXiaodong Chi . Anthracene-bridged "Texas-sized" box for the simultaneous detection and uptake of tryptophan. Chinese Chemical Letters, 2024, 35(9): 109444-. doi: 10.1016/j.cclet.2023.109444

    19. [19]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    20. [20]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

Metrics
  • PDF Downloads(0)
  • Abstract views(776)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return