Citation: Zhao-po Zeng, Ze-chun Shao, Ru Xiao, Yong-gen Lu. Structure Evolution Mechanism of Poly (acrylonitrile/itaconic acid/acrylamide) during Thermal Oxidative Stabilization Process[J]. Chinese Journal of Polymer Science, ;2017, 35(8): 1020-1034. doi: 10.1007/s10118-017-1945-2
-
Polyacrylonitrile (PAN) polymers with different compositions were prepared by an efficient aqueous free-radical polymerization technique. Thermal properties of polyacrylonitrile homopolymer (PAN), poly(acrylonitrile/itaconic acid)[P(AN/IA)] and poly(acrylonitrile/itaconic acid/acrylamide)[P(AN/IA/AM)] were studied by Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry and thermogravimetry in detail. It was found that AM had the ability to initiate and accelerate thermal oxidative stabilization process, which was confirmed by the lower initiation temperature and broader exothermic peak in P(AN/IA/AM) as compared with that in P(AN/IA) and PAN. The intensity of heat releasing during the thermal treatment was relaxed due to the presence of two separated exothermic peaks. Accompanied by DSC analysis and calculation of the apparent activation energy of cyclization reaction, two peaks were assigned to the ionic and free radical induction mechanisms, respectively. The higher rate constant in P(AN/IA/AM) indicated that the ionic mechanism actually had a kinetic advantage at promoting thermal stability over the free radical mechanism. This study clearly show that the synthesized P(AN/IA/AM) terpolymers possess larger room to adjust manufacture parameters to fabricate high performance of PAN-based carbon fibers.
-
-
[1]
Yusof, N. and Ismail, A.F., J. Anal. Appl. Pyrol., 2012, 93:1 doi: 10.1016/j.jaap.2011.10.001
-
[2]
Rahaman, M.S.A., Ismail, A.F. and Mustafa, A., Polym. Degrad. Stab., 2007, 92:1421 doi: 10.1016/j.polymdegradstab.2007.03.023
-
[3]
Dong, Z.X., Feng, T., Zheng, C., Li, G.M., Liu, F.F. and Qiu, X.P., Chinese J. Polym. Sci., 2016, 34(11):1386 doi: 10.1007/s10118-016-1841-1
-
[4]
Frank, E., Hermanutz, F. and Buchmeiser, M.R., Macromol. Mater. Eng., 2012, 297:493 doi: 10.1002/mame.v297.6
-
[5]
Gupta, A.K., Paliwal, D.K. and Bajaj. P., J. Appl. Polym. Sci., 1996, 59:1819 doi: 10.1002/(ISSN)1097-4628
-
[6]
Lei, D.Y., Devarayan, K., Li, X.D., Choi, W.K., Seo, M.K. and Kim, B.S., Carbon Lett., 2014, 15(4):290 doi: 10.5714/CL.2014.15.4.290
-
[7]
Cheraghi, R., Bahrami, S.H., Arami, M. and Enayati, M., J. Polym. Res., 2016, 23:207 doi: 10.1007/s10965-016-1104-4
-
[8]
Bajaj, P., Sreekumar, T.V. and Sen, K., J. Appl. Polym. Sci., 2001, 79:1640 doi: 10.1002/(ISSN)1097-4628
-
[9]
Li, P. and Shan, H.G, J. Appl. Polym. Sci., 1995, 56:877 doi: 10.1002/app.1995.070560712
-
[10]
Xue, Y., Liu, J. and Liang, J.Y., Polym. Degrad. Stab., 2013, 98:219 doi: 10.1016/j.polymdegradstab.2012.10.018
-
[11]
Nguyen-Thai, N.U. and Hong, S.C., Carbon, 2014, 69:571 doi: 10.1016/j.carbon.2013.12.068
-
[12]
Liu, J., Lian, F., Ma, Z.K. and Liang, J.Y., Chinese J. Polym. Sci., 2012, 30(6):786 doi: 10.1007/s10118-012-1165-8
-
[13]
Bahrami, S.H., Bajaj, P. and Sen, K., J. Appl. Polym. Sci., 2003, 88:685 doi: 10.1002/(ISSN)1097-4628
-
[14]
Grassie, N. and McGuchan, P., J. Appl. Polym. Sci., 1971, 7:1357
-
[15]
Grassie, N. and McGuchan, R., Eur. Polym. J., 1972, 8:257 doi: 10.1016/0014-3057(72)90032-8
-
[16]
Wu, G.P., Lu, C.X., Ling, L.C. and Lu, Y.G., Polym. Bull., 2009, 62:667 doi: 10.1007/s00289-009-0039-x
-
[17]
Bajaj, P., Sreekumar, T.V. and Sen, K., Polymer, 2001, 42:1707 doi: 10.1016/S0032-3861(00)00583-8
-
[18]
Devasia, R., Reghunadhan Nair, C.P. and Ninan, K.N., Eur. Polym. J., 2002, 38:2003 doi: 10.1016/S0014-3057(02)00086-1
-
[19]
Devasia, R., Reghunadhan Nair, C.P. and Ninan, K.N., Eur. Polym. J., 2003, 39:537 doi: 10.1016/S0014-3057(02)00275-6
-
[20]
Cheraghi, R., Bahrami, S.H., Arami, M. and Enayati, M., J. Polym. Res., 2016, 23:207 doi: 10.1007/s10965-016-1104-4
-
[21]
Tsai, J.S. and Lin, C.H., J. Mater. Sci. Lett., 1990, 9:869 doi: 10.1007/BF00722155
-
[22]
Zhang, W.X., Liu, J. and Wang, C.G., Carbon, 2003, 41:2805 doi: 10.1016/S0008-6223(03)00391-9
-
[23]
Wu, X.P., Zhang, X.L., Lu, C.X. and Ling, L.C., Chinese J. Polym. Sci., 2010, 28(3):367 doi: 10.1007/s10118-010-9026-9
-
[24]
Gressie, N. and McGuchan, R., Eur. Polym. J., 1997, 6(9):1277
-
[25]
Watt, W. and Johnson, W., Nature, 1975, 257:210 doi: 10.1038/257210a0
-
[26]
Sivy, G.T. and Coleman, M.M., Carbon, 1981, 19:137 doi: 10.1016/0008-6223(81)90121-4
-
[27]
Fu, Z.Y., Gui, Y., Cao, C.L., Liu, B.J., Zhou, C. and Zhang, H.X., J. Mater. Sci., 2014, 49:2864 doi: 10.1007/s10853-013-7992-3
-
[28]
Bajaj, P., Sen, K. and Bahrami, S.H., J. Appl. Polym. Sci., 1996, 59:1539 doi: 10.1002/(ISSN)1097-4628
-
[29]
Ju, A.Q., Guang, S.Y. and Xu, H.Y., Carbon, 2013, 54:323 doi: 10.1016/j.carbon.2012.11.044
-
[30]
Ouyang, Q., Cheng, L., Wang, H.J. and Li, K.X., Polym. Degrad. Stab., 2008, 93:1415 doi: 10.1016/j.polymdegradstab.2008.05.021
-
[31]
Collins, G.L., Thomas, N.W. and Williams, G.E., Carbon, 1988, 26:671 doi: 10.1016/0008-6223(88)90070-X
-
[32]
Yu, M.J., Bai, Y.J., Wang, C.G., Xu, Y. and Guo, P.Z., Mater. Lett., 2007, 61:2292 doi: 10.1016/j.matlet.2006.08.071
-
[33]
Bang, Y.H., Lee, S. and Cho, H.H., J. Appl. Polym. Sci., 1998, 68:2205 doi: 10.1002/(ISSN)1097-4628
-
[34]
Ouyang, Q., Wang, H.J., Cheng, L. and Sun, Y.H., J. Polym. Res., 2007, 14:497 doi: 10.1007/s10965-007-9133-7
-
[35]
Gupta, A.K., Paliwal, D.K. and Bajaj, P., J. Appl. Polym. Sci., 1995, 58:1161 doi: 10.1002/app.1995.070580710
-
[36]
Arbab, S. and Zeinolebadi, A., Polym. Degrad. Stab., 2013, 98:2537 doi: 10.1016/j.polymdegradstab.2013.09.014
-
[37]
Xiao, S.J., Wang, B., Zhao, C., Xu, L.H. and Chen, B.H., J. Appl. Polym. Sci., 2013, 127(3):2332 doi: 10.1002/app.37930
-
[38]
Sen, K., Bajaj, P. and Sreekumar, T.V., J. Polym. Sci. Part B:Polym. Phys., 2003, 41:2949
-
[39]
Fitzer, E. and Muller, D.J., Carbon, 1975, 13(1):63 doi: 10.1016/0008-6223(75)90259-6
-
[40]
Ouyang, Q., Cheng, L., Wang, H.J. and Li, K.X., J. Therm. Anal. Calorim., 2008, 94(1):85 doi: 10.1007/s10973-007-8773-5
-
[41]
Ozawa. T.B., Chem. Soc. Jpn., 1965, 38:1881 doi: 10.1246/bcsj.38.1881
-
[42]
Kissinger, H.E., Anal. Chem., 1957, 29:1702 doi: 10.1021/ac60131a045
-
[43]
Collins, G.L., Thomas, N.W. and Williams, G.E., Fiber. Sci. Technol., 1984, 20:37 doi: 10.1016/0015-0568(84)90056-3
-
[1]
-
-
[1]
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
-
[2]
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
-
[3]
Fangzhou Wang , Wentong Gao , Chenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305
-
[4]
Dan-Ying Xing , Xiao-Dan Zhao , Chuan-Shu He , Bo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436
-
[5]
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
-
[6]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[7]
Juan Guo , Mingyuan Fang , Qingsong Liu , Xiao Ren , Yongqiang Qiao , Mingju Chao , Erjun Liang , Qilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957
-
[8]
Ruizhi Yang , Xia Li , Weiping Guo , Zixuan Chen , Hongwei Ming , Zhong-Zhen Luo , Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268
-
[9]
Chaozheng He , Pei Shi , Donglin Pang , Zhanying Zhang , Long Lin , Yingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116
-
[10]
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
-
[11]
Rongliang Deng , Yihang Chen , Xiaotong Fan , Guolong Chen , Shuli Wang , Changzhi Yu , Xiao Yang , Tingzhu Wu , Zhong Chen , Yue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346
-
[12]
Hong Chen , Mao-Yin Ran , Long-Hua Li , Xin-Tao Wu , Hua Lin . [Cs14Cl][Tm71Se110]: An unusual salt-inclusion chalcogenide containing different valent Tm centers and ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100397-100397. doi: 10.1016/j.cjsc.2024.100397
-
[13]
Xinghui Yao , Zhouyu Wang , Da-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916
-
[14]
Yijia Jiao , Yuzhu Li , Yuting Zhou , Peipei Cen , Yi Ding , Yan Guo , Xiangyu Liu . Structural evolution and zero-field SMM behaviour in ferromagnetically-coupled disk-type Co7 clusters bearing exclusively end-on azido bridges. Chinese Chemical Letters, 2024, 35(8): 109082-. doi: 10.1016/j.cclet.2023.109082
-
[15]
Rui Wang , Yang Liang , Julius Rebek Jr. , Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228
-
[16]
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
-
[17]
Neng Shi , Haonan Jia , Jixiang Zhang , Pengyu Lu , Chenglong Cai , Yixin Zhang , Liqiang Zhang , Nongyue He , Weiran Zhu , Yan Cai , Zhangqi Feng , Ting Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302
-
[18]
Yuxin Li , Chengbin Liu , Qiuju Li , Shun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541
-
[19]
Yin-Hang Chai , Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322
-
[20]
Qijun Tang , Wenguang Tu , Yong Zhou , Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(572)
- HTML views(1)