Citation: Qi-lei Song, Shuang-yan Hu, Jun-peng Zhao, Guang-zhao Zhang. Organocatalytic Copolymerization of Mixed Type Monomers[J]. Chinese Journal of Polymer Science, ;2017, 35(5): 581-601. doi: 10.1007/s10118-017-1925-6 shu

Organocatalytic Copolymerization of Mixed Type Monomers

  • Corresponding author: Jun-peng Zhao, msjpzhao@scut.edu.cn
  • Received Date: 15 December 2016
    Revised Date: 3 January 2017
    Accepted Date: 3 January 2017

    Fund Project: This work was financially supported by the National Natural Science Foundation of China 21674038This work was financially supported by the National Natural Science Foundation of China 21504024

  • Triggered by environmental concerns and the rising demands for metal-free polymers in e.g. bio-related and microelectronic applications, studies on organocatalytic polymerization have been launched and developed unprecedentedly during the last 15 years. A wide range of organic molecules are now available in polymer chemists' toolbox to choose from as catalysts for polymerization of (hetero) cyclic and polar vinyl monomers. Apart from the intrinsic merits such as lower toxicity and better solubility compared with (transition) metal catalysts/initiators, organocatalysts have also shown, in many cases, excellence to achieve high polymerization rates and/or good control (selectivity). In addition, particular natures and catalytic/activating mechanisms of organocatalysts have led to new opportunities for rational design and efficient synthesis of macromolecular architectures, i.e. chain structures, topological structures and functionalities. This mini-review is specially themed on pathways to construct copolymer chain structures by organocatalytic copolymerization of mixed type monomers (comonomers bearing different polymerizing moieties) and will be sectioned by different comonomer combinations, including cyclic monoesters of different sizes, cyclic monoesters and lactides, cyclic esters and cyclic carbonates or epoxides, heterocycles and vinyl monomers.
  • 加载中
    1. [1]

      Nederberg, F., Connor, E.F., Möller, M., Glauser, T. and Hedrick, J.L., Angew. Chem. Int. Ed., 2001, 40:2712  doi: 10.1002/(ISSN)1521-3773

    2. [2]

      Kamber, N.E., Jeong, W., Waymouth, R.M., Pratt, R.C., Lohmeijer, B.G. and Hedrick, J.L., Chem. Rev., 2007, 107:5813  doi: 10.1021/cr068415b

    3. [3]

      Dove, A.P., ACS Macro Lett., 2012, 1:1409  doi: 10.1021/mz3005956

    4. [4]

      Fèvre, M. , Vignolle, J. , Gnanou, Y. and Taton, D. , in "Polymer science: a comprehensive reference", 1st ed. , ed. by Möller, M. , Elsevier, Amsterdam, Holland, 2012, p. 67

    5. [5]

      Brown, H.A. and Waymouth, R.M., Acc. Chem. Res., 2013, 46:2585  doi: 10.1021/ar400072z

    6. [6]

      Mespouille, L., Coulembier, O., Kawalec, M., Dove, A.P. and Dubois, P., Prog. Polym. Sci., 2014, 39:1144  doi: 10.1016/j.progpolymsci.2014.02.003

    7. [7]

      Fuchise, K., Chen, Y., Satoh, T. and Kakuchi, T., Polym. Chem., 2013, 4:4278  doi: 10.1039/c3py00278k

    8. [8]

      Fevre, M., Pinaud, J., Gnanou, Y., Vignolle, J. and Taton, D., Chem. Soc. Rev., 2013, 42:2142  doi: 10.1039/c2cs35383k

    9. [9]

      Chen, Y. and Kakuchi, T., Chem. Rec., 2016, 16:2161  doi: 10.1002/tcr.v16.4

    10. [10]

      Sardon, H., Pascual, A., Mecerreyes, D., Taton, D., Cramail, H. and Hedrick, J.L., Macromolecules, 2015, 48:3153  doi: 10.1021/acs.macromol.5b00384

    11. [11]

      Fukushima, K., Coulembier, O., Lecuyer, J.M., Almegren, H.A., Alabdulrahman, A.M., Alsewailem, F.D., McNeil, M.A., Dubois, P., Waymouth, R.M., Horn, H.W., Rice, J.E. and Hedrick, J.L., J. Polym. Sci., Part A:Polym. Chem., 2011, 49:1273  doi: 10.1002/pola.v49.5

    12. [12]

      Horn, H.W., Jones, G.O., Wei, D.S., Fukushima, K., Lecuyer, J.M., Coady, D.J., Hedrick, J.L. and Rice, J.E., J. Phys. Chem. A, 2012, 116:12389

    13. [13]

      Fukushima, K., Lecuyer, J.M., Wei, D.S., Horn, H.W., Jones, G.O., Al-Megren, H.A., Alabdulrahman, A.M., Alsewailem, F.D., McNeil, M.A. and Rice, J.E., Polym. Chem., 2013, 4:1610  doi: 10.1039/C2PY20793A

    14. [14]

      Matyjaszewski, K., Science, 2011, 333:1104  doi: 10.1126/science.1209660

    15. [15]

      Kiesewetter, M.K., Shin, E.J., Hedrick, J.L. and Waymouth, R.M., Macromolecules, 2010, 43:2093  doi: 10.1021/ma9025948

    16. [16]

      Ottou, W.N., Sardon, H., Mecerreyes, D., Vignolle, J. and Taton, D., Prog. Polym. Sci., 2016, 56:64  doi: 10.1016/j.progpolymsci.2015.12.001

    17. [17]

      Bourissou, D., Moebs-Sanchez, S. and Martin-Vaca, B., C. R. Chim., 2007, 10:775  doi: 10.1016/j.crci.2007.05.004

    18. [18]

      Suriano, F., Coulembier, O., Hedrick, J.L. and Dubois, P., Polym. Chem., 2011, 2:528  doi: 10.1039/C0PY00211A

    19. [19]

      Dove, A.P., Pratt, R.C., Lohmeijer, B.G., Culkin, D.A., Hagberg, E.C., Nyce, G.W., Waymouth, R.M. and Hedrick, J.L., Polymer, 2006, 47:4018  doi: 10.1016/j.polymer.2006.02.037

    20. [20]

      Naumann, S. and Dove, A.P., Polym. Chem., 2015, 6:3185  doi: 10.1039/C5PY00145E

    21. [21]

      Naumann, S. and Dove, A.P., Polym. Int., 2016, 65:16  doi: 10.1002/pi.5034

    22. [22]

      Domínguez de María, P., ChemCatChem, 2010, 2:487  doi: 10.1002/cctc.201000030

    23. [23]

      Boileau, S. and Illy, N., Prog. Polym. Sci., 2011, 36:1132  doi: 10.1016/j.progpolymsci.2011.05.005

    24. [24]

      Zhao, J., Hadjichristidis, N. and Gnanou, Y., Polimery, 2014, 59:49  doi: 10.14314/polimery

    25. [25]

      Zhao, J. , Hadjichristidis, N. and Schlaad, H. , in "Anionic polymerization: principles, practice, strength, consequences and applications", ed. by Hadjichristidis, N. and Hirao, A. , Springer, Tokyo, 2015, p. 429

    26. [26]

      Thomas, C. and Bibal, B., Green Chem., 2014, 16:1687  doi: 10.1039/C3GC41806E

    27. [27]

      Matyjaszewski, K., Progr. Polym. Sci., 2005, 30:858  doi: 10.1016/j.progpolymsci.2005.06.004

    28. [28]

      Matyjaszewski, K. , Gnanou, Y. and Leibler, L. , Eds. "Macromolecular engineering. Precise synthesis, materials properties, applications", Wiley-VCH, Weinheim, 2007

    29. [29]

      Odian, G. , "Principles of polymerization", 4th ed. , John Wiley & Sons, Hoboken, New Jersey, 2004

    30. [30]

      Brocas, A.L., Mantzaridis, C., Tunc, D. and Carlotti, S., Prog. Polym. Sci., 2013, 38:845  doi: 10.1016/j.progpolymsci.2012.09.007

    31. [31]

      Herzberger, J., Niederer, K., Pohlit, H., Seiwert, J., Worm, M., Wurm, F.R. and Frey, H., Chem. Rev., 2016, 116:2170  doi: 10.1021/acs.chemrev.5b00441

    32. [32]

      Makiguchi, K., Ogasawara, Y., Kikuchi, S., Satoh, T. and Kakuchi, T., Macromolecules, 2013, 46:1772  doi: 10.1021/ma4000495

    33. [33]

      Makiguchi, K., Kikuchi, S., Satoh, T. and Kakuchi, T., J. Polym. Sci., Part A:Polym. Chem., 2013, 51:2455  doi: 10.1002/pola.26631

    34. [34]

      Bourissou, D., Martin-Vaca, B., Dumitrescu, A., Graullier, M. and Lacombe, F., Macromolecules, 2005, 38:9993  doi: 10.1021/ma051646k

    35. [35]

      Iwasaki, Y. and Yamaguchi, E., Macromolecules, 2010, 43:2664  doi: 10.1021/ma100242s

    36. [36]

      Clément, B., Grignard, B., Koole, L., Jérôme, C. and Lecomte, P., Macromolecules, 2012, 45:4476  doi: 10.1021/ma3004339

    37. [37]

      Zhang, S., Li, A., Zou, J., Lin, L.Y. and Wooley, K.L., ACS Macro Lett., 2012, 1:328  doi: 10.1021/mz200226m

    38. [38]

      Zhang, S., Zou, J., Zhang, F., Elsabahy, M., Felder, S.E., Zhu, J., Pochan, D.J. and Wooley, K.L., J. Am. Chem. Soc., 2012, 134:18467  doi: 10.1021/ja309037m

    39. [39]

      Susperregui, N., Delcroix, D., Martin-Vaca, B., Bourissou, D. and Maron, L., J. Org. Chem., 2010, 75:6581  doi: 10.1021/jo101346t

    40. [40]

      Delcroix, D., Couffin, A., Susperregui, N., Navarro, C., Maron, L., Martin-Vaca, B. and Bourissou, D., Polym. Chem., 2011, 2:2249  doi: 10.1039/c1py00210d

    41. [41]

      Sardon, H., Engler, A.C., Chan, J.M., García, J.M., Coady, D.J., Pascual, A., Mecerreyes, D., Jones, G.O., Rice, J.E. and Horn, H.W., J. Am. Chem. Soc., 2013, 135:16235  doi: 10.1021/ja408641g

    42. [42]

      Hadjichristidis, N. and Hirao, A. , "Anionic polymerization: principles, practice, strength, consequences and applications", Springer, 2015

    43. [43]

      Shin, E.J., Brown, H.A., Gonzalez, S., Jeong, W., Hedrick, J.L. and Waymouth, R.M., Angew. Chem. Int. Ed., 2011, 50:6388  doi: 10.1002/anie.201101853

    44. [44]

      Kim, H., Olsson, J.V., Hedrick, J.L. and Waymouth, R.M., ACS Macro Lett., 2012, 1:845  doi: 10.1021/mz3001397

    45. [45]

      Silvers, A.L., Chang, C.C. and Emrick, T., J. Polym. Sci., Part A:Polym. Chem., 2012, 50:3517  doi: 10.1002/pola.v50.17

    46. [46]

      Song, Q., Xia, Y., Hu, S., Zhao, J. and Zhang, G., Polymer, 2016, 102:248  doi: 10.1016/j.polymer.2016.09.026

    47. [47]

      Zhao, J. and Hadjichristidis, N., Polym. Chem., 2015, 6:2659  doi: 10.1039/C5PY00019J

    48. [48]

      Hodge, P., Chem. Rev., 2014, 114:2278  doi: 10.1021/cr400222p

    49. [49]

      Zhong, Z., Dijkstra, P.J. and Jan, F., Macromol. Chem. Phys., 2000, 201:1329  doi: 10.1002/1521-3935(20000801)201:12<1329::AID-MACP1329>3.0.CO;2-8

    50. [50]

      Nakayama, Y., Watanabe, N., Kusaba, K., Sasaki, K., Cai, Z., Shiono, T. and Tsutsumi, C., J. Appl. Polym. Sci., 2011, 121:2098  doi: 10.1002/app.v121.4

    51. [51]

      Kumar, A., Kalra, B., Alex Dekhterman, A. and Gross, R.A., Macromolecules, 2000, 33:6303  doi: 10.1021/ma000344+

    52. [52]

      Ceccorulli, G., Scandola, M., Kumar, A., Kalra, B. and Gross, R.A., Biomacromolecules, 2005, 6:902  doi: 10.1021/bm0493279

    53. [53]

      Bouyahyi, M., Pepels, M.P.F., Heise, A. and Duchateau, R., Macromolecules, 2012, 45:3356  doi: 10.1021/ma3001675

    54. [54]

      Pascual, A., Sardón, H., Ruipérez, F., Gracia, R., Sudam, P., Veloso, A. and Mecerreyes, D., J. Polym. Sci., Part A:Polym. Chem., 2015, 53:552

    55. [55]

      Pascual, A., Leiza, J.R. and Mecerreyes, D., Eur. Polym. J., 2013, 49:1601  doi: 10.1016/j.eurpolymj.2013.02.009

    56. [56]

      Kricheldorf, H.R., Bornhorst, K. and Hachmann-Thiessen, H., Macromolecules, 2005, 38:5017  doi: 10.1021/ma047873o

    57. [57]

      Fernández, J., Larrañaga, A., Etxeberría, A. and Sarasua, J., Polym. Degrad. Stab., 2013, 98:481  doi: 10.1016/j.polymdegradstab.2012.12.014

    58. [58]

      Lohmeijer, B.G.G., Pratt, R.C., Leibfarth, F., Logan, J.W., Long, D.A., Dove, A.P., Nederberg, F., Choi, J., Wade, C., Waymouth, R.M. and Hedrick, J.L., Macromolecules, 2006, 39:8574  doi: 10.1021/ma0619381

    59. [59]

      Baśko, M. and Kubisa, P., J. Polym. Sci., Part A:Polym. Chem., 2006, 44:7071  doi: 10.1002/pola.21712

    60. [60]

      Baśko, M. and Kubisa, P., J. Polym. Sci., Part A:Polym. Chem., 2007, 45:3090  doi: 10.1002/(ISSN)1099-0518

    61. [61]

      Brule, E., Guerineau, V., Vermaut, P., Prima, F., Balogh, J., Maron, L., Slawin, A.M.Z., Nolan, S.P. and Thomas, C.M., Polym. Chem., 2013, 4:2414  doi: 10.1039/c3py00108c

    62. [62]

      Hiki, S., Miyamoto, M. and Kimura, Y., Polymer, 2000, 41:7369  doi: 10.1016/S0032-3861(00)00086-0

    63. [63]

      Jeffery, B.J., Whitelaw, E.L., Garcia-Vivo, D., Stewart, J.A., Mahon, M.F., Davidson, M.G. and Jones, M.D., Chem. Commun., 2011, 47:12328  doi: 10.1039/c1cc15265c

    64. [64]

      Reeve, M.S., Mccarthy, S.P., Downey, M.J. and Gross, R.A., Macromolecules, 1994, 27:825  doi: 10.1021/ma00081a030

    65. [65]

      Nederberg, F., Lohmeijer, B.G., Leibfarth, F., Pratt, R.C., Choi, J., Dove, A.P., Waymouth, R.M. and Hedrick, J.L., Biomacromolecules, 2007, 8:153  doi: 10.1021/bm060795n

    66. [66]

      Couffin, A., Delcroix, D., Martín-Vaca, B., Bourissou, D. and Navarro, C., Macromolecules, 2013, 46:4354  doi: 10.1021/ma400916k

    67. [67]

      Makiguchi, K., Satoh, T. and Kakuchi, T., Macromolecules, 2011, 44:1999  doi: 10.1021/ma200043x

    68. [68]

      Zhao, J., Pahovnik, D., Gnanou, Y. and Hadjichristidis, N., Macromolecules, 2014, 47:3814  doi: 10.1021/ma500830v

    69. [69]

      Simon, J., Olsson, J.V., Kim, H., Tenney, I.F. and Waymouth, R.M., Macromolecules, 2012, 45:9275  doi: 10.1021/ma302311h

    70. [70]

      Xu, J., Prifti, F. and Song, J., Macromolecules, 2011, 44:2660  doi: 10.1021/ma200021m

    71. [71]

      Aguirre-Chagala, Y.E., Santos, J.L., Herrera-Nájera, R. and Herrera-Alonso, M., Macromolecules, 2013, 46:5871  doi: 10.1021/ma400894t

    72. [72]

      Xu, J., Yang, J., Ye, X., Ma, C., Zhang, G. and Pispas, S., J. Polym. Sci., Part A:Polym. Chem., 2015, 53:846  doi: 10.1002/pola.v53.7

    73. [73]

      Sudo, A., Suzuki, A. and Endo, T., J. Polym. Sci., Part A:Polym. Chem., 2013, 51:4213  doi: 10.1002/pola.26835

    74. [74]

      Hu, S., Zhao, J. and Zhang, G., ACS Macro Lett., 2016, 5:40  doi: 10.1021/acsmacrolett.5b00839

    75. [75]

      Uenishi, K., Atsushi Sudo, A. and Endo, T., Macromolecules, 2007, 40:6535  doi: 10.1021/ma070433n

    76. [76]

      Sudo, A., Uenishi, K. and Endo, T., J. Polym. Sci., Part A:Polym. Chem., 2007, 45:3798  doi: 10.1002/(ISSN)1099-0518

    77. [77]

      Uenishi, K., Sudo, A. and Endo, T., J. Polym. Sci., Part A:Polym. Chem., 2008, 46:4092  doi: 10.1002/(ISSN)1099-0518

    78. [78]

      Uenishi, K., Sudo, A. and Endo, T., J. Polym. Sci., Part A:Polym. Chem., 2009, 47:1661  doi: 10.1002/pola.v47:6

    79. [79]

      Uenishi, K., Sudo, A. and Endo, T., J. Polym. Sci., Part A:Polym. Chem., 2009, 47:6750  doi: 10.1002/pola.v47:24

    80. [80]

      Sudo, A., Zhang, Y. and Endo, T., J. Polym. Sci., Part A:Polym. Chem., 2011, 49:619  doi: 10.1002/pola.24470

    81. [81]

      Hu, S., Dai, G., Zhao, J. and Zhang, G., Macromolecules, 2016, 49:4462  doi: 10.1021/acs.macromol.6b00840

    82. [82]

      Jenkins, A. D. , "Alternating copolymers", 1st ed. , Plenum Press, New York, USA, 1987

    83. [83]

      Luo, M., Li, Y., Zhang, Y.Y. and Zhang, X.H., Polymer, 2016, 82:406  doi: 10.1016/j.polymer.2015.11.011

    84. [84]

      Lu, X.B., Ren, W.M. and Wu, G.P., Acc. Chem. Res., 2012, 45:1721  doi: 10.1021/ar300035z

    85. [85]

      Darensbourg, D.J., Chem. Rev., 2007, 107:2388  doi: 10.1021/cr068363q

    86. [86]

      Jeske, R.C., Diciccio, A.M. and Coates, G.W., J. Am. Chem. Soc., 2007, 129:11330  doi: 10.1021/ja0737568

    87. [87]

      van Zee, N.J. and Coates, G.W., Angew. Chem. Int. Ed., 2015, 54:2665  doi: 10.1002/anie.201410641

    88. [88]

      Robert, C., de Montigny, F. and Thomas, C.M., Nat. Commun., 2011, 2:586  doi: 10.1038/ncomms1596

    89. [89]

      Ohsawa, S., Morino, K., Sudo, A. and Endo, T., Macromolecules, 2010, 43:3585  doi: 10.1021/ma1001244

    90. [90]

      Ohsawa, S., Morino, K., Sudo, A. and Endo, T., Macromolecules, 2011, 44:1814  doi: 10.1021/ma102602e

    91. [91]

      Simionescu, C.I., Grigoras, M., Bîcu, E. and Onofrei, G., Polym. Bull., 1985, 14:79

    92. [92]

      Rivas, B., Pizarro, G.D.C. and Canessa, G., Polym. Bull., 1988, 19:123

    93. [93]

      Hagiwara, T., Takeda, M., Hamana, H. and Narita, T., Macromolecules, 1989, 22:2025  doi: 10.1021/ma00194a090

    94. [94]

      Ikeda, Y., Yoshida, Y., Ishihara, K., Hamana, H., Narita, T. and Hagiwara, T., Macromol. Rapid Commun., 1996, 17:713  doi: 10.1002/marc.1996.030171006

    95. [95]

      Yang, H., Xu, J., Pispas, S. and Zhang, G., Macromolecules, 2012, 45:3312  doi: 10.1021/ma300291q

    96. [96]

      Xu, J., Yang, H. and Zhang, G., Macromol. Chem. Phys., 2013, 214:378  doi: 10.1002/macp.201200510

    97. [97]

      Yang, H., Ge, J., Huang, W., Xue, X., Chen, J., Jiang, B. and Zhang, G., RSC Adv., 2014, 4:23377  doi: 10.1039/c4ra00829d

    98. [98]

      Yan, M., Yang, H. and Zhang, G., Mater. Sci. Eng., C, 2015, 51:189  doi: 10.1016/j.msec.2015.02.032

    99. [99]

      Kanazawa, A., Kanaoka, S. and Aoshima, S., J. Am. Chem. Soc., 2013, 135:9330  doi: 10.1021/ja404616c

    100. [100]

      Kanazawa, A., Kanaoka, S. and Aoshima, S., Macromolecules, 2014, 47:6635  doi: 10.1021/ma501707a

    101. [101]

      Kanazawa, A. and Aoshima, S., Polym. Chem., 2015, 6:5675  doi: 10.1039/C5PY00152H

    102. [102]

      Kanazawa, A. and Aoshima, S., ACS Macro Lett., 2015, 4:783  doi: 10.1021/acsmacrolett.5b00365

    103. [103]

      Yang, H., Xu, J., Pispas, S. and Zhang, G., RSC Adv., 2013, 3:6853  doi: 10.1039/c3ra23422c

    104. [104]

      Naumann, S., Schmidt, F.G., Speiser, M., Boehl, M., Epple, S., Bonten, C. and Buchmeiser, M.R., Macromolecules, 2013, 46:8426  doi: 10.1021/ma4018586

    105. [105]

      Asenjo-Sanz, I., Veloso, A., Miranda, J.I., Alegria, A., Pomposo, J.A. and Barroso-Bujans, F., Macromolecules, 2015, 48:1664  doi: 10.1021/acs.macromol.5b00096

    106. [106]

      Han, B., Zhang, L., Liu, B., Dong, X., Kim, I., Duan, Z. and Theato, P., Macromolecules, 2015, 48:3431  doi: 10.1021/acs.macromol.5b00555

    107. [107]

      Zhang, D., Boopathi, S.K., Hadjichristidis, N., Gnanou, Y. and Feng, X., J. Am. Chem. Soc., 2016, 138:11117  doi: 10.1021/jacs.6b06679

    108. [108]

      Datta, P.P. and Kiesewetter, M.K., Macromolecules, 2016, 49:774  doi: 10.1021/acs.macromol.6b00136

  • 加载中
    1. [1]

      Wendi DouGuangying WanTiefeng LiuLin HanWu ZhangChuang SunRensheng SongJianhui ZhengYujing LiuXinyong Tao . Conductive composite binder for recyclable LiFePO4 cathode. Chinese Chemical Letters, 2024, 35(11): 109389-. doi: 10.1016/j.cclet.2023.109389

    2. [2]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    3. [3]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    4. [4]

      Yiwen LinYijie ChenChunhui DengNianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813

    5. [5]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    6. [6]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    7. [7]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    8. [8]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    9. [9]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    10. [10]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    11. [11]

      Yifei ZhangYuncong XueLaiwei GaoRui LiaoFeng WangFei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217

    12. [12]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    13. [13]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    14. [14]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    15. [15]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    16. [16]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    17. [17]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    18. [18]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    19. [19]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    20. [20]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

Metrics
  • PDF Downloads(0)
  • Abstract views(737)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return