Citation: Wang Yang-peng, Wei Xiao, Duan Jin, Yang Jing-hui, Zhang Nan, Huang Ting, Wang Yong. Greatly Enhanced Hydrolytic Degradation Ability of Poly(L-lactide) Achieved by Adding Poly(ethylene glycol)[J]. Chinese Journal of Polymer Science, ;2017, 35(3): 386-399. doi: 10.1007/s10118-017-1904-y shu

Greatly Enhanced Hydrolytic Degradation Ability of Poly(L-lactide) Achieved by Adding Poly(ethylene glycol)

  • Corresponding author: Wang Yong, yongwang1976@163.com
  • Received Date: 10 August 2016
    Revised Date: 20 September 2016
    Accepted Date: 20 September 2016

    Fund Project: the National Natural Science Foundation of China 51473137

  • Plasticized poly(L-lactide) (PLLA) materials have been applied in many fields and the microstructure performance of such materials attracts much attention of researchers. However, few reports declared the hydrolytic degradation ability of the plasticized PLLA materials. In this article, a small quantity of poly(ethylene glycol) (PEG) was introduced into PLLA, which aimed to understand the hydrolytic degradation behavior of the plasticized PLLA materials. The microstructures of the plasticized samples were comparatively investigated using scanning electron microscopy (SEM), wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and Flourier transform infrared spectroscopy (FTIR), etc. The results demonstrated that PEG improved the hydrophilicity of sample surface, and the relatively high content of PEG enhanced the crystallization ability of PLLA matrix. The hydrolytic degradation measurement was carried out at 60℃ in an alkaline solution of pH=12. The results demonstrated that the plasticized PLLA samples exhibited accelerated hydrolytic degradation compared with the pure PLLA sample, and the hydrolytic degradation was also dependent on the PEG content. Further results demonstrated that PEG induced the change of hydrolytic degradation mechanism possibly due to the good dissolution ability of PEG in water, which provided more paths for the penetration of water. Furthermore, the microstructure evolution of the plasticized PLLA during the hydrolytic degradation process was also investigated, and the results demonstrated the occurrence of PLLA crystallization, which was possibly contributed to the decreased hydrolytic degradation rate observed at relatively long hydrolytic degradation time. This work is of great significance and may open a new way for promoting the reclamation of PLLA waste material.
  • 
    1. [1]

      Ye, H., Owh, C., Jiang, S., Ng, C., Wirawan, D. and Loh, X.J., Polymers, 2016, 8: 130

    2. [2]

      Tsuji, H. and Nakahara, K., J. Appl. Polym. Sci., 2002, 86: 186  doi: 10.1002/(ISSN)1097-4628

    3. [3]

      Ho, K.L.G., Pometto, A.L., Gadea, A., Briceno, J.A. and Rojas, A., J. Environ. Polym. Degrad., 1999, 7: 173

    4. [4]

      Li, S.M., Tenon, M., Garreau, H., Braud, C. and Vert, M., Polym. Degrad. Stab., 2000, 67: 85  doi: 10.1016/S0141-3910(99)00091-9

    5. [5]

      Liu, L., Li, S.M., Garreau, H. and Vert, M., Biomacromolecules, 2000, 1: 350

    6. [6]

      Takiyama, E. and Fujimaki, T., Plastics, 1994, 45: 71

    7. [7]

      Li, H.B. and Huneault, M.A., Polymer, 2007, 48: 6855  doi: 10.1016/j.polymer.2007.09.020

    8. [8]

      Raquez, J.M., Habibi, Y., Murariu, M. and Dubois, P., Prog. Polym. Sci., 2013, 38: 1504  doi: 10.1016/j.progpolymsci.2013.05.014

    9. [9]

      Park, S.D., Todo, M. and Arakawa, K., J. Mater. Sci., 2005, 40: 1055  doi: 10.1007/s10853-005-6534-z

    10. [10]

      Theryo, G., Jing, F., Pitet, L.M. and Hillmyer, M.A., Macromolecules, 2010, 43: 7394

    11. [11]

      Grijpma, D.W., Kroeze, E., Nijenhuis, A.J. and Pennings, A.J., Polymer, 1993, 34: 1496  doi: 10.1016/0032-3861(93)90868-B

    12. [12]

      Sinclair, R.G., J. Macromol. Sci. A, 1996, 33: 585  doi: 10.1080/10601329608010880

    13. [13]

      Labrecque, L.V., Kumar, R.A., Davé, V., Gross, R.A. and McCarthy, S.P., J. Appl. Polym. Sci., 1997, 66: 1507  doi: 10.1002/(ISSN)1097-4628

    14. [14]

      Jiang, L., Zhang, J.W. and Wolcott, M.P., Polymer, 2007, 48: 7632  doi: 10.1016/j.polymer.2007.11.001

    15. [15]

      Thellen, C., Orroth, C., Froio, D., Ziegler, D. and Lucciarini, J., Polymer, 2005, 46: 11716

    16. [16]

      Jiang, L., Wolcott, M.P. and Zhang, J., Biomacromolecules, 2006, 7: 199  doi: 10.1021/bm050581q

    17. [17]

      Li, Y. and Shimizu, H., Eur. Polym. J., 2009, 45: 738  doi: 10.1016/j.eurpolymj.2008.12.010

    18. [18]

      Hashima, K., Nishitsuji, S. and Inoue, T., Polymer, 2010, 51: 3934

    19. [19]

      Ishida, S., Nagasaki, R., Chino, K., Dong, T. and Inoue, Y., J. Appl. Polym. Sci., 2009, 113: 558  doi: 10.1002/app.v113:1

    20. [20]

      Park, S.D., Todo, M., Arakawa, K. and Koganemaru, M., Polymer, 2006, 47: 1357

    21. [21]

      Grijpma, D.W., Altpeter, H., Bevis, M.J. and Feijen, J., Polym. Int., 2002, 51: 845  doi: 10.1002/(ISSN)1097-0126

    22. [22]

      Ozkoc, G. and kemaloglu, S., J. Appl. Polym. Sci., 2009, 114: 2481  doi: 10.1002/app.v114:4

    23. [23]

      Kulinski, Z. and Piorkowska, E., Polymer, 2005, 46: 10290  doi: 10.1016/j.polymer.2005.07.101

    24. [24]

      Mehmet, K., Humeyra, S. and Guralp, O., Polym. Eng. Sci., 2014, 54: 264  doi: 10.1002/pen.v54.2

    25. [25]

      Dobircau, L., Delpouve, N., Herbinet, R., Domenek, S., Pluart, L.L., Delbreilh, L., Ducruet, V. and Dargent, E., Polym. Eng. Sci., 2015, 55: 858  doi: 10.1002/pen.v55.4

    26. [26]

      Martino, V.P., Ruseckaite, R.A. and Jiménez, A., Polym. Int., 2009, 58: 437

    27. [27]

      Phuphuak, Y., Miao, Y., Zinck, P. and Chirachanchai, S., Polymer, 2013, 54: 7058  doi: 10.1016/j.polymer.2013.10.006

    28. [28]

      Yu, L., Liu, H.S., Dean, K. and Chen, L., J. Polym. Sci., Part B: Polym. Phys., 2008, 46: 2630  doi: 10.1002/polb.v46:23

    29. [29]

      Martin, O. and Avérous, L., Polymer, 2001, 42: 6209  doi: 10.1016/S0032-3861(01)00086-6

    30. [30]

      Xiao, H.W., Lu, W. and Yeh, J.T., J. Appl. Polym. Sci., 2009, 133: 112

    31. [31]

      Xiao, H.W., Liu, F., Jiang, T. and Yeh, J.T., J. Appl. Polym. Sci., 2010, 117: 2980

    32. [32]

      Yeh, J.T., Huang, C.Y., Chai, W.L. and Chen, K.N., J. Appl. Polym. Sci., 2009, 112: 2757

    33. [33]

      Lai, W.C., Liau, W.B. and Lin, T.T., Polymer, 2004, 45: 3073  doi: 10.1016/j.polymer.2004.03.003

    34. [34]

      Xu, J.Z., Zhang, Z.J., Xu, H., Chen, J.B., Ran, R. and Li, Z.M., Macromolecules, 2015, 48: 4891

    35. [35]

      Saha, S.K. and Tsuji, H., Polym. Degrad. Stab., 2006, 91: 1665  doi: 10.1016/j.polymdegradstab.2005.12.009

    36. [36]

      Ray, S.S. and Bousmina, M., Prog. Mater. Sci., 2005, 50: 962  doi: 10.1016/j.pmatsci.2005.05.002

    37. [37]

      Fukuzaki, H., Yoshida, M., Asano, M. and Kumakura, M., Eur. Polym. J., 1989, 25: 1019  doi: 10.1016/0014-3057(89)90131-6

    38. [38]

      Zhou, Q. and Xanthos, M., Polym. Degrad. Stab., 2008, 93: 1450  doi: 10.1016/j.polymdegradstab.2008.05.014

    39. [39]

      Gorrasi, G. and Pantani, R., Polym. Degrad. Stab., 2013, 98: 1006  doi: 10.1016/j.polymdegradstab.2013.02.005

    40. [40]

      Pantani, R. and Sorrentino, A., Polym. Degrad. Stab., 2013, 98: 1089  doi: 10.1016/j.polymdegradstab.2013.01.005

    41. [41]

      Li, S.M., Garreau, H. and Vert, M., J. Mater. Sci. Mater. Med., 1990, 1: 198  doi: 10.1007/BF00701077

    42. [42]

      Vert, M., Li, S.M. and Garreau, H., J. Biomat. Sci, Polym. E., 1994, 6: 639

    43. [43]

      Tsuji, H. and Ikada, Y., J. Polym. Sci., Part A: Polym. Chem., 1998, 36: 59  doi: 10.1002/(ISSN)1099-0518

    44. [44]

      Tsuji, H., Mizuno, A. and Ikada, Y., J. Appl. Polym. Sci., 2000, 77: 1452  doi: 10.1002/(ISSN)1097-4628

    45. [45]

      Tsuji, H., Nakahara, K. and Ikarashi, K., Macromol. Mater. Eng., 2001, 286: 398  doi: 10.1002/(ISSN)1439-2054

    46. [46]

      Andersson, S.R., Hakkarainen, M. and Inkinen, S., Biomacromolecules, 2010, 13: 1212

    47. [47]

      Chung, S., J. Control. Release, 1995, 34: 9  doi: 10.1016/0168-3659(94)00100-9

    48. [48]

      Xu, L., Crawford, K. and Gorman, C., Macromolecules, 2011, 44: 4777

    49. [49]

      Fukushima, K., Tabuani, D., Dottori, M., Armentano, I., Kenny, J.M. and Gamino, G., Polym. Degrad. Stab., 2011, 96: 2120  doi: 10.1016/j.polymdegradstab.2011.09.018

    50. [50]

      Tsuji, H. and Nakahara, K., J. Appl. Polym. Sci., 2002, 86: 186  doi: 10.1002/(ISSN)1097-4628

    51. [51]

      Tsuji, H. and Ikarashi, K., Polym. Degrad. Stab., 2004, 85: 647  doi: 10.1016/j.polymdegradstab.2004.03.004

    52. [52]

      Tsuji, H., Shimizu, K. and Sato, Y., J. Appl. Polym. Sci., 2012, 125: 2394  doi: 10.1002/app.36498

    53. [53]

      Qu, M., Tu, H.L., Amarante, M., Song, Y.Q. and Zhu, S.S., J. Appl. Polym. Sci., 2014, 131: 40287

    54. [54]

      Chen, H.M., Wang, Y.P., Chen, J., Yang, J.H., Zhang, N., Huang, T. and Wang, Y., Polym. Degrad. Stab., 2013, 98: 2672  doi: 10.1016/j.polymdegradstab.2013.09.033

    55. [55]

      Chen, H.M., Feng, C.X., Zhang, W.B., Yang, J.H., Huang, T., Zhang, N. and Wang, Y., Polym. Degrad. Stab., 2013, 98: 198  doi: 10.1016/j.polymdegradstab.2012.10.009

    56. [56]

      Chen, H.M., Chen, J.W., Chen, J., Yang, J.H., Huang, T., Zhang, N. and Wang, Y., Polym. Degrad. Stab., 2012, 97: 2273  doi: 10.1016/j.polymdegradstab.2012.07.037

    57. [57]

      Eili, M., Shameli, K., Ibrahim, N.A. and Yunus, W.M.Z.W., Int. J. Mol. Sci., 2012, 13: 7938  doi: 10.3390/ijms13077938

    58. [58]

      Hu, Y., Rogunovaa, M., Topolkaraevb, V., Hiltnera, A. and Baer, E., Polymer, 2003, 44: 5701

    59. [59]

      Hu, Y., Hua, Y.S., Topolkaraevb, V., Hiltnera, A. and Baer, E., Polymer, 2003, 44: 5711  doi: 10.1016/S0032-3861(03)00615-3

    60. [60]

      Lemmoupchi, Y., Murariu, M., Santos, A.M.D., Amass, A.J., Schacht, E. and Dubois, P., Eur. Polym. J., 2009, 45: 2839  doi: 10.1016/j.eurpolymj.2009.07.006

    61. [61]

      Loh, X.J., Tan, Y.X., Li, Z., Teo, L.S., Goh, S.H. and Li, J., Biomaterials, 2008, 29: 2164  doi: 10.1016/j.biomaterials.2008.01.016

    62. [62]

      Fischer, E.W., Sterzel, H.J. and Wegber, G., Kolloid, Z.Z., Polymer, 1973, 251: 980  doi: 10.1007/BF01498927

    63. [63]

      Zhang, J.M., Tashiro, K., Tsuji, H. and Domb, A.J., Macromolecules, 2008, 41: 1352  doi: 10.1021/ma0706071

    64. [64]

      Shieh, Y.T. and Liu, G.L., J. Polym. Sci., Part B: Polym. Phys., 2007, 45: 1870  doi: 10.1002/(ISSN)1099-0488

    65. [65]

      Pan, P.J., Liang, Z.C., Zhu, B., Dong, T. and Inoue, Y., Macromolecules, 2008, 41: 8011  doi: 10.1021/ma801436f

    66. [66]

      Na, B., Lv, R.H., Zou, S.F., Li, Z.J., Tian, N.N. and Fu, Q., Macromolecules, 2010, 43: 1702

    67. [67]

      Yan, C.H., Wu, J., Zhang, J.M., He, J.S. and Zhang, J., Polym. Degrad. Stab., 2015, 118: 130  doi: 10.1016/j.polymdegradstab.2015.04.019

    68. [68]

      Huang, Y., Zhang, C., Pan, Y., Zhou, Y., Jiang, L. and Dan, Y., Polym. Degrad. Stab., 2013, 98: 943  doi: 10.1016/j.polymdegradstab.2013.02.018

    69. [69]

      Lee, S.Y., Chin, I.J. and Jung, J.S., Eur. Polym. J., 1999, 35: 2147  doi: 10.1016/S0014-3057(99)00024-5

    70. [70]

      Luo, Y.B., Wang, X.L. and Wang, Y.Z., Polym. Degrad. Stab., 2012, 97: 721  doi: 10.1016/j.polymdegradstab.2012.02.011

    71. [71]

      Chen, H.M., Shen, Y., Yang, J.H., Huang, T., Zhang, N., Wang, Y. and Zhou, Z.W., Polymer, 2013, 54: 6644  doi: 10.1016/j.polymer.2013.09.059

    72. [72]

      Pan, P.J., Zhu, B., Kai, W.H., Dong, T. and Inoue, Y., Macromolecules, 2008, 41: 4296

    1. [1]

      Ye, H., Owh, C., Jiang, S., Ng, C., Wirawan, D. and Loh, X.J., Polymers, 2016, 8: 130

    2. [2]

      Tsuji, H. and Nakahara, K., J. Appl. Polym. Sci., 2002, 86: 186  doi: 10.1002/(ISSN)1097-4628

    3. [3]

      Ho, K.L.G., Pometto, A.L., Gadea, A., Briceno, J.A. and Rojas, A., J. Environ. Polym. Degrad., 1999, 7: 173

    4. [4]

      Li, S.M., Tenon, M., Garreau, H., Braud, C. and Vert, M., Polym. Degrad. Stab., 2000, 67: 85  doi: 10.1016/S0141-3910(99)00091-9

    5. [5]

      Liu, L., Li, S.M., Garreau, H. and Vert, M., Biomacromolecules, 2000, 1: 350

    6. [6]

      Takiyama, E. and Fujimaki, T., Plastics, 1994, 45: 71

    7. [7]

      Li, H.B. and Huneault, M.A., Polymer, 2007, 48: 6855  doi: 10.1016/j.polymer.2007.09.020

    8. [8]

      Raquez, J.M., Habibi, Y., Murariu, M. and Dubois, P., Prog. Polym. Sci., 2013, 38: 1504  doi: 10.1016/j.progpolymsci.2013.05.014

    9. [9]

      Park, S.D., Todo, M. and Arakawa, K., J. Mater. Sci., 2005, 40: 1055  doi: 10.1007/s10853-005-6534-z

    10. [10]

      Theryo, G., Jing, F., Pitet, L.M. and Hillmyer, M.A., Macromolecules, 2010, 43: 7394

    11. [11]

      Grijpma, D.W., Kroeze, E., Nijenhuis, A.J. and Pennings, A.J., Polymer, 1993, 34: 1496  doi: 10.1016/0032-3861(93)90868-B

    12. [12]

      Sinclair, R.G., J. Macromol. Sci. A, 1996, 33: 585  doi: 10.1080/10601329608010880

    13. [13]

      Labrecque, L.V., Kumar, R.A., Davé, V., Gross, R.A. and McCarthy, S.P., J. Appl. Polym. Sci., 1997, 66: 1507  doi: 10.1002/(ISSN)1097-4628

    14. [14]

      Jiang, L., Zhang, J.W. and Wolcott, M.P., Polymer, 2007, 48: 7632  doi: 10.1016/j.polymer.2007.11.001

    15. [15]

      Thellen, C., Orroth, C., Froio, D., Ziegler, D. and Lucciarini, J., Polymer, 2005, 46: 11716

    16. [16]

      Jiang, L., Wolcott, M.P. and Zhang, J., Biomacromolecules, 2006, 7: 199  doi: 10.1021/bm050581q

    17. [17]

      Li, Y. and Shimizu, H., Eur. Polym. J., 2009, 45: 738  doi: 10.1016/j.eurpolymj.2008.12.010

    18. [18]

      Hashima, K., Nishitsuji, S. and Inoue, T., Polymer, 2010, 51: 3934

    19. [19]

      Ishida, S., Nagasaki, R., Chino, K., Dong, T. and Inoue, Y., J. Appl. Polym. Sci., 2009, 113: 558  doi: 10.1002/app.v113:1

    20. [20]

      Park, S.D., Todo, M., Arakawa, K. and Koganemaru, M., Polymer, 2006, 47: 1357

    21. [21]

      Grijpma, D.W., Altpeter, H., Bevis, M.J. and Feijen, J., Polym. Int., 2002, 51: 845  doi: 10.1002/(ISSN)1097-0126

    22. [22]

      Ozkoc, G. and kemaloglu, S., J. Appl. Polym. Sci., 2009, 114: 2481  doi: 10.1002/app.v114:4

    23. [23]

      Kulinski, Z. and Piorkowska, E., Polymer, 2005, 46: 10290  doi: 10.1016/j.polymer.2005.07.101

    24. [24]

      Mehmet, K., Humeyra, S. and Guralp, O., Polym. Eng. Sci., 2014, 54: 264  doi: 10.1002/pen.v54.2

    25. [25]

      Dobircau, L., Delpouve, N., Herbinet, R., Domenek, S., Pluart, L.L., Delbreilh, L., Ducruet, V. and Dargent, E., Polym. Eng. Sci., 2015, 55: 858  doi: 10.1002/pen.v55.4

    26. [26]

      Martino, V.P., Ruseckaite, R.A. and Jiménez, A., Polym. Int., 2009, 58: 437

    27. [27]

      Phuphuak, Y., Miao, Y., Zinck, P. and Chirachanchai, S., Polymer, 2013, 54: 7058  doi: 10.1016/j.polymer.2013.10.006

    28. [28]

      Yu, L., Liu, H.S., Dean, K. and Chen, L., J. Polym. Sci., Part B: Polym. Phys., 2008, 46: 2630  doi: 10.1002/polb.v46:23

    29. [29]

      Martin, O. and Avérous, L., Polymer, 2001, 42: 6209  doi: 10.1016/S0032-3861(01)00086-6

    30. [30]

      Xiao, H.W., Lu, W. and Yeh, J.T., J. Appl. Polym. Sci., 2009, 133: 112

    31. [31]

      Xiao, H.W., Liu, F., Jiang, T. and Yeh, J.T., J. Appl. Polym. Sci., 2010, 117: 2980

    32. [32]

      Yeh, J.T., Huang, C.Y., Chai, W.L. and Chen, K.N., J. Appl. Polym. Sci., 2009, 112: 2757

    33. [33]

      Lai, W.C., Liau, W.B. and Lin, T.T., Polymer, 2004, 45: 3073  doi: 10.1016/j.polymer.2004.03.003

    34. [34]

      Xu, J.Z., Zhang, Z.J., Xu, H., Chen, J.B., Ran, R. and Li, Z.M., Macromolecules, 2015, 48: 4891

    35. [35]

      Saha, S.K. and Tsuji, H., Polym. Degrad. Stab., 2006, 91: 1665  doi: 10.1016/j.polymdegradstab.2005.12.009

    36. [36]

      Ray, S.S. and Bousmina, M., Prog. Mater. Sci., 2005, 50: 962  doi: 10.1016/j.pmatsci.2005.05.002

    37. [37]

      Fukuzaki, H., Yoshida, M., Asano, M. and Kumakura, M., Eur. Polym. J., 1989, 25: 1019  doi: 10.1016/0014-3057(89)90131-6

    38. [38]

      Zhou, Q. and Xanthos, M., Polym. Degrad. Stab., 2008, 93: 1450  doi: 10.1016/j.polymdegradstab.2008.05.014

    39. [39]

      Gorrasi, G. and Pantani, R., Polym. Degrad. Stab., 2013, 98: 1006  doi: 10.1016/j.polymdegradstab.2013.02.005

    40. [40]

      Pantani, R. and Sorrentino, A., Polym. Degrad. Stab., 2013, 98: 1089  doi: 10.1016/j.polymdegradstab.2013.01.005

    41. [41]

      Li, S.M., Garreau, H. and Vert, M., J. Mater. Sci. Mater. Med., 1990, 1: 198  doi: 10.1007/BF00701077

    42. [42]

      Vert, M., Li, S.M. and Garreau, H., J. Biomat. Sci, Polym. E., 1994, 6: 639

    43. [43]

      Tsuji, H. and Ikada, Y., J. Polym. Sci., Part A: Polym. Chem., 1998, 36: 59  doi: 10.1002/(ISSN)1099-0518

    44. [44]

      Tsuji, H., Mizuno, A. and Ikada, Y., J. Appl. Polym. Sci., 2000, 77: 1452  doi: 10.1002/(ISSN)1097-4628

    45. [45]

      Tsuji, H., Nakahara, K. and Ikarashi, K., Macromol. Mater. Eng., 2001, 286: 398  doi: 10.1002/(ISSN)1439-2054

    46. [46]

      Andersson, S.R., Hakkarainen, M. and Inkinen, S., Biomacromolecules, 2010, 13: 1212

    47. [47]

      Chung, S., J. Control. Release, 1995, 34: 9  doi: 10.1016/0168-3659(94)00100-9

    48. [48]

      Xu, L., Crawford, K. and Gorman, C., Macromolecules, 2011, 44: 4777

    49. [49]

      Fukushima, K., Tabuani, D., Dottori, M., Armentano, I., Kenny, J.M. and Gamino, G., Polym. Degrad. Stab., 2011, 96: 2120  doi: 10.1016/j.polymdegradstab.2011.09.018

    50. [50]

      Tsuji, H. and Nakahara, K., J. Appl. Polym. Sci., 2002, 86: 186  doi: 10.1002/(ISSN)1097-4628

    51. [51]

      Tsuji, H. and Ikarashi, K., Polym. Degrad. Stab., 2004, 85: 647  doi: 10.1016/j.polymdegradstab.2004.03.004

    52. [52]

      Tsuji, H., Shimizu, K. and Sato, Y., J. Appl. Polym. Sci., 2012, 125: 2394  doi: 10.1002/app.36498

    53. [53]

      Qu, M., Tu, H.L., Amarante, M., Song, Y.Q. and Zhu, S.S., J. Appl. Polym. Sci., 2014, 131: 40287

    54. [54]

      Chen, H.M., Wang, Y.P., Chen, J., Yang, J.H., Zhang, N., Huang, T. and Wang, Y., Polym. Degrad. Stab., 2013, 98: 2672  doi: 10.1016/j.polymdegradstab.2013.09.033

    55. [55]

      Chen, H.M., Feng, C.X., Zhang, W.B., Yang, J.H., Huang, T., Zhang, N. and Wang, Y., Polym. Degrad. Stab., 2013, 98: 198  doi: 10.1016/j.polymdegradstab.2012.10.009

    56. [56]

      Chen, H.M., Chen, J.W., Chen, J., Yang, J.H., Huang, T., Zhang, N. and Wang, Y., Polym. Degrad. Stab., 2012, 97: 2273  doi: 10.1016/j.polymdegradstab.2012.07.037

    57. [57]

      Eili, M., Shameli, K., Ibrahim, N.A. and Yunus, W.M.Z.W., Int. J. Mol. Sci., 2012, 13: 7938  doi: 10.3390/ijms13077938

    58. [58]

      Hu, Y., Rogunovaa, M., Topolkaraevb, V., Hiltnera, A. and Baer, E., Polymer, 2003, 44: 5701

    59. [59]

      Hu, Y., Hua, Y.S., Topolkaraevb, V., Hiltnera, A. and Baer, E., Polymer, 2003, 44: 5711  doi: 10.1016/S0032-3861(03)00615-3

    60. [60]

      Lemmoupchi, Y., Murariu, M., Santos, A.M.D., Amass, A.J., Schacht, E. and Dubois, P., Eur. Polym. J., 2009, 45: 2839  doi: 10.1016/j.eurpolymj.2009.07.006

    61. [61]

      Loh, X.J., Tan, Y.X., Li, Z., Teo, L.S., Goh, S.H. and Li, J., Biomaterials, 2008, 29: 2164  doi: 10.1016/j.biomaterials.2008.01.016

    62. [62]

      Fischer, E.W., Sterzel, H.J. and Wegber, G., Kolloid, Z.Z., Polymer, 1973, 251: 980  doi: 10.1007/BF01498927

    63. [63]

      Zhang, J.M., Tashiro, K., Tsuji, H. and Domb, A.J., Macromolecules, 2008, 41: 1352  doi: 10.1021/ma0706071

    64. [64]

      Shieh, Y.T. and Liu, G.L., J. Polym. Sci., Part B: Polym. Phys., 2007, 45: 1870  doi: 10.1002/(ISSN)1099-0488

    65. [65]

      Pan, P.J., Liang, Z.C., Zhu, B., Dong, T. and Inoue, Y., Macromolecules, 2008, 41: 8011  doi: 10.1021/ma801436f

    66. [66]

      Na, B., Lv, R.H., Zou, S.F., Li, Z.J., Tian, N.N. and Fu, Q., Macromolecules, 2010, 43: 1702

    67. [67]

      Yan, C.H., Wu, J., Zhang, J.M., He, J.S. and Zhang, J., Polym. Degrad. Stab., 2015, 118: 130  doi: 10.1016/j.polymdegradstab.2015.04.019

    68. [68]

      Huang, Y., Zhang, C., Pan, Y., Zhou, Y., Jiang, L. and Dan, Y., Polym. Degrad. Stab., 2013, 98: 943  doi: 10.1016/j.polymdegradstab.2013.02.018

    69. [69]

      Lee, S.Y., Chin, I.J. and Jung, J.S., Eur. Polym. J., 1999, 35: 2147  doi: 10.1016/S0014-3057(99)00024-5

    70. [70]

      Luo, Y.B., Wang, X.L. and Wang, Y.Z., Polym. Degrad. Stab., 2012, 97: 721  doi: 10.1016/j.polymdegradstab.2012.02.011

    71. [71]

      Chen, H.M., Shen, Y., Yang, J.H., Huang, T., Zhang, N., Wang, Y. and Zhou, Z.W., Polymer, 2013, 54: 6644  doi: 10.1016/j.polymer.2013.09.059

    72. [72]

      Pan, P.J., Zhu, B., Kai, W.H., Dong, T. and Inoue, Y., Macromolecules, 2008, 41: 4296

  • 加载中
    1. [1]

      Mingxin SongLijing XieFangyuan SuZonglin YiQuangui GuoCheng-Meng Chen . New insights into the effect of hard carbons microstructure on the diffusion of sodium ions into closed pores. Chinese Chemical Letters, 2024, 35(6): 109266-. doi: 10.1016/j.cclet.2023.109266

    2. [2]

      Zirui ZhuPeng LiuJinhua WangHongbin ZhangWei Luo . Effects of nano-metakaolin on the enhanced properties and microstructure development of natural hydraulic lime. Chinese Chemical Letters, 2025, 36(4): 109794-. doi: 10.1016/j.cclet.2024.109794

    3. [3]

      Wen XiaoFazhan WangYangzhuo GuXi HeNa FanQian ZhengShugang QinZhongshan HeYuquan WeiXiangrong Song . PEG400-mediated nanocarriers improve the delivery and therapeutic efficiency of mRNA tumor vaccines. Chinese Chemical Letters, 2024, 35(5): 108755-. doi: 10.1016/j.cclet.2023.108755

    4. [4]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    5. [5]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    6. [6]

      Haibo YeQianyu LiJuan LiDidi LiZhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861

    7. [7]

      Yun-Fei ZhangChun-Hui ZhangJian-Hui XuLei LiDan LiJin-Hong FanJiale GaoXin QuanQi WuYue ZouYan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385

    8. [8]

      Yuqing ZhuHaohao ChenLi WangLiqun YeHoule ZhouQintian PengHuaiyong ZhuYingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884

    9. [9]

      Menglu GuoYing-Qi SongJunfei ChengGuoqiang DongXun SunChunquan Sheng . Hydrophobic tagging-induced degradation of NAMPT in leukemia cells. Chinese Chemical Letters, 2024, 35(9): 109392-. doi: 10.1016/j.cclet.2023.109392

    10. [10]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    11. [11]

      Yunlong SunWei DingYanhao WangZhening ZhangRuyun WangYinghui GuoZhiyuan GaoHaiyan DuDong Ma . New insight into manganese-enhanced abiotic degradation of microplastics: Processes and mechanisms. Chinese Chemical Letters, 2025, 36(3): 109941-. doi: 10.1016/j.cclet.2024.109941

    12. [12]

      Jiayi GuoLiangxiong LingQinwei LuYi ZhouXubiao LuoYanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380

    13. [13]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    14. [14]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    15. [15]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    16. [16]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    17. [17]

      Si HaJiacheng ZhuHua XiangGuoshun Luo . Hydrophobic tag tethering degrader as a promising paradigm of protein degradation: Past, present and future perspectives. Chinese Chemical Letters, 2024, 35(8): 109192-. doi: 10.1016/j.cclet.2023.109192

    18. [18]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    19. [19]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    20. [20]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

Metrics
  • PDF Downloads(0)
  • Abstract views(837)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return