Citation: Zhao Yong, Li Guo-min, Liu Fang-fang, Dai Xue-min, Dong Zhi-xin, Qiu Xue-peng. Synthesis and Properties of Novel Polyimide Fibers Containing Phosphorus Groups in the Side Chain (DATPPO)[J]. Chinese Journal of Polymer Science, ;2017, 35(3): 372-385. doi: 10.1007/s10118-017-1896-7 shu

Synthesis and Properties of Novel Polyimide Fibers Containing Phosphorus Groups in the Side Chain (DATPPO)

  • Corresponding author: Dong Zhi-xin, zxdong@ciac.ac.cn Qiu Xue-peng, xp_q@ciac.ac.cn
  • Received Date: 15 July 2016
    Revised Date: 23 August 2016
    Accepted Date: 11 September 2016

    Fund Project: the National Natural Science Foundation of China 51373164the National Basic Research Program of China 2014CB643604

  • A series of polyamic acid copolymers (co-PAAs) containing phosphorous groups in the side chains were synthesized from[2,5-bis(4-aminophenoxy) phenyl] diphenylphosphine oxide (DATPPO) and 4,4'-oxydianiline (ODA) with 3,3',4,4'-biphenyltetracarboxylic dianhydride (s-BPDA) through the polycondensation in N,N'-dimethyacetamide (DMAc). The co-PAA solutions were spun into fibers by a dry-jet wet spinning process followed by thermal imidization to obtain co-polyimide (co-PI) fibers. FTIR spectra and elemental analysis confirmed the chemical structure of PI fibers. SEM results indicated that the resulting PI fibers had a smooth and dense surface, a uniform and circle-shape diameter. The thermogravimetric measurements showed that with the increase of DATPPO content, the resulting PI fibers possessed high decomposition temperature and residual char yield, indicating that the PI fibers had good thermal stability. The corresponding limiting oxygen index (LOI) values from the experiment results showed that the co-PI fibers possessed good flame-retardant property. Furthermore, the mechanical properties of the co-PI fibers were investigated systematically. When the DATPPO content increased, the tensile strength and initial modulus of the co-PI fibers decreased. However, the mechanical properties were improved by increasing the draw ratio of the fibers. When the draw ratio was up to 2.5, the tensile strength and initial modulus of the co-PI fibers reached up to 0.64 and 10.02 GPa, respectively. The WAXD results showed that the order degree of amorphous matter increased with increased stretching. In addition, the SAXS results displayed that valuably drawing the fibers could eliminate the voids inside and lead to better mechanical property. WAXD revealed that the orientation of the amorphous polymer influenced the mechanical properties of the fibers.
  • 加载中
    1. [1]

      1 Samuel, I.R. and Edgar, S.C., 1968, U.S. Pat., 3,415,782

    2. [2]

      Cheng, S.Z.D., Wu, Z., Eashoo, M., Hsu, S.L.C. and Harris, F.W., Polymer, 1991, 32(10): 1803

    3. [3]

      Eashoo, M., Shen, D., Wu, Z., Lee, C.J., Harris, F.W. and Cheng, S.Z.D., Polymer, 1993, 34(15): 3209  doi: 10.1016/0032-3861(93)90392-N

    4. [4]

      Koontz, S.L., Leger, L.J., Visentine, J.T., Hunton, D.E., Cross, J.B. and Hakes, C.L., J. Spacecraft Rockets, 1995, 32(3): 483  doi: 10.2514/3.26641

    5. [5]

      Grossman, E., Lifshitz, Y., Wolan, J.T., Mount, C.K. and Hoflund, G.B., J. Spacecraft Rockets, 1999, 36(1): 75  doi: 10.2514/2.3435

    6. [6]

      Dong, J., Yin, C., Luo, W. and Zhang, Q., J. Mater. Sci., 2013, 48(21): 7594

    7. [7]

      Fang, G., Li, H., Liu, J., Ni, H., Yang, H. and Yang, S., Chem. Lett., 2015, 44(8): 1083  doi: 10.1246/cl.150396

    8. [8]

      Eashoo, M., Wu, Z., Zhang, A., Shen, D., Tse, C., Harris, F.W., Cheng, S.Z.D., Gardner, K.H. and Hsiao, B.S., Macromol. Chem. Phys., 1994, 195(6): 2207

    9. [9]

      Yin, C., Dong, J., Li, Z., Zhang, Z. and Zhang, Q., Compos. Part B-Eng., 2014, 58: 430  doi: 10.1016/j.compositesb.2013.10.074

    10. [10]

      10 Shen, Z., Mu, Y., Ding, Y., Liu, Y. and Zhao, C., Study on the mechanical property of polyimide film in space radiation environments; proceedings of the Selected Proceedings of the Chinese Society for Optical Engineering Conferences held November 2015, International Society for Optics and Photonics, 2016.

    11. [11]

      Yokota, K., Abe, S., Tagawa, M., Iwata, M., Miyazaki, E., Ishizawa, J.I., Kimoto, Y. and Yokota, R., High. Perform. Polym., 2010, 22: 237  doi: 10.1177/0954008308101535

    12. [12]

      Duo, S.W., Song, M.M., Liu, T.Z., Hu, C.Y. and Li, M.S., Key Eng. Mater., 2012, 492: 521

    13. [13]

      Liu, R. and Ma, J.D., Sichuan Text Technology (in Chinese), 2004, 4: 47

    14. [14]

      Ding, X., Qiu, X., Ma, X., Li, G. and Gao, L., Chemistry Journal of Chinese Universities (in Chinese), 2013, 34: 2650

    15. [15]

      Zhao, Y., Feng, T., Li, G., Liu, F., Dai, X., Dong, Z. and Qiu, X., RSC Adv., 2016, 6(48): 42482  doi: 10.1039/C6RA02344D

    16. [16]

      Hergenrother, P.M., Watson, K.A., Smith, J.G., Connell, J.W. and Yokota, R., Polymer, 2002, 43(19): 5077

    17. [17]

      17 Connell, J.W., Smith, J.G., Hergenrother, P.M., Watson, K.A. and Thompson, C.M., 2003, U.S. Pat., 7,109,287

    18. [18]

      18 Hergenrother, P.M., Smith, J.G., Connell, J.W. and Watson, K.A., 2005, U.S. Pat., 6,958,192

    19. [19]

      van Krevelen, D.W., Polymer, 1975, 16(8): 615  doi: 10.1016/0032-3861(75)90157-3

    20. [20]

      Zhang, M., Niu, H., Lin, Z., Qi, S., Chang, J., Ge, Q. and Wu, D., Macromol. Mater. Eng., 2015, 300(11): 1096  doi: 10.1002/mame.v300.11

    21. [21]

      Chang, J., Niu, H., He, M., Sun, M. and Wu, D., J. Appl. Polym. Sci., 2015, 132(34): 42474

    22. [22]

      Vickers, M.E., Briggs, N.P., Ibbett, R.N., Payne, J.J. and Smith, S.B., Polymer, 2001, 42(19): 8241

    23. [23]

      Dong, J., Yin, C., Zhang, Z., Wang, X., Li, H. and Zhang, Q., Macromol. Mater. Eng., 2014, 299(10): 1170  doi: 10.1002/mame.v299.10

    24. [24]

      Yin, C., Dong, J., Zhang, D., Lin, J. and Zhang, Q., Eur. Polym. J., 2015, 67: 88  doi: 10.1016/j.eurpolymj.2015.03.028

    25. [25]

      Yin, C., Dong, J., Zhang, Z., Zhang, Q. and Lin, J., J. Polym. Sci., Part B: Polym. Phys., 2015, 53(3): 183  doi: 10.1002/polb.v53.3

    26. [26]

      26 Dong, J., Yin, C., Lin, J., Zhang, D. and Zhang, Q., RSC Adv., 2014, 4(84): 44666

  • 加载中
    1. [1]

      Yu-Hui ZhangYe TianXianliang ShengChen-Shuang LiuLu-Qiang WeiJie WangYong Chen . Construction of a black phosphorous-based noncovalent multiple nanosupramolecular assembly for synergistic targeted photothermal and chemodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110193-. doi: 10.1016/j.cclet.2024.110193

    2. [2]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    3. [3]

      Shangda QuYiming YuanXu YeWentao Xu . High sensitivity artificial synapses using printed high-transmittance ITO fibers for neuromorphic computing. Chinese Chemical Letters, 2024, 35(12): 110030-. doi: 10.1016/j.cclet.2024.110030

    4. [4]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    5. [5]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    6. [6]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    7. [7]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    8. [8]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    9. [9]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    10. [10]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    11. [11]

      Junchuan Sun Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330

    12. [12]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    13. [13]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    14. [14]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    15. [15]

      Zhiyang ZhangYi ChenYingnan ZhangChuanlang Zhan . Deuterated chloroform replaces ultra-dry chloroform to achieve high-efficient organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110083-. doi: 10.1016/j.cclet.2024.110083

    16. [16]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    17. [17]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    18. [18]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    19. [19]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    20. [20]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

Metrics
  • PDF Downloads(0)
  • Abstract views(726)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return