Citation: Liu Ya-lan, Wang Zheng-ke, Qin Wei, Hu Qiao-ling, Tang Ben Zhong. Fluorescent Detection of Cu(Ⅱ) by Chitosan-based AIE Bioconjugate[J]. Chinese Journal of Polymer Science, ;2017, 35(3): 365-371. doi: 10.1007/s10118-017-1876-y shu

Fluorescent Detection of Cu(Ⅱ) by Chitosan-based AIE Bioconjugate

  • Corresponding author: Wang Zheng-ke, wangzk@zju.edu.cn Hu Qiao-ling, huql@zju.edu.cn Tang Ben Zhong, tangbenz@ust.hk
  • Received Date: 30 July 2016
    Revised Date: 17 September 2016
    Accepted Date: 30 September 2016

    Fund Project: the National Natural Science Foundation of China 21104067, 21274127, 21374099 and 51473144the Key Science Technology Innovation Team of Zhejiang Province 2013TD02

  • Detection of Cu(Ⅱ) is very important in disease diagnose, biological system detection and environmental monitoring. Previously, we found that the product TPE-CS prepared by attaching the chromophores of tetraphenylethylene (TPE) to the chitosan (CS) chains showed excellent fluorescent properties. In this study, we tried to use TPE-CS for detecting Cu(Ⅱ) because of the stable complexation of CS with heavy metals and the luminosity mechanism of the Restriction of Intramolecular Rotations (RIR) for aggregation-induced emission (AIE)-active materials. The fluorescence intensity changed when TPE-CS was contacted with different metal ions, to be specific, no change for Na+, slightly increase for Hg2+, Pb2+, Zn2+, Cd2+, Fe2+, Fe3+ due to the RIR caused by the complexation between CS and metal ions. However, for Cu2+, an obvious fluorescence decrease was observed because of the Photoinduced-Electron-Transfer (PET). Moreover, we found that the quenched FL intensity of TPE-CS was proportional to the concentration of Cu(Ⅱ) in the range of 5 μmol/L to 100 μmol/L, which provided a new way to quantitatively detect Cu(Ⅱ). Besides, TPE-CS has excellent water-solubility as well as absorbability (the percentage of removal, R=84%), which is an excellent detection probe and remover for Cu(Ⅱ).
  • 加载中
    1. [1]

      Wang, F.Y., Li, Y.X., Li, W.Y., Chen, J., Zhang, Q.F., Shahzad, S.A. and Yu, C., Talanta, 2015, 132: 72

    2. [2]

      2 Georgopoulos, P.G., Roy, A., Yonone, L.M.J., Opiekun, R.E. and Lioy, P.J.J., Toxicol. Environ. Health B: Crit. Rev., 2001, 4(4): 341

    3. [3]

      Bonham, M., O'Connor, J.M., Hannigan, B.M. and Strain, J.J., Brit. J. Nutr., 2007, 87(5): 393

    4. [4]

      4 Sanji, T., Nakamura, M. and Tanaka, M., Tetrahedron Lett., 2011, 52(26): 3283

    5. [5]

      Zietz, B.P., de Vergara, J.D. and Dunkelberg, H., Environ. Res., 2003, 92(2): 129

    6. [6]

      6 Kumbhar, H.S., Yadav, U.N., Gadilohar, B.L. and Shankarling, G.S., Sensor Actuat. B: Chem., 2014, 203: 174

    7. [7]

      Kandasamy, K., Ganesabaskaran, S., Pachamuthu, M.P. and Ramanathan, A., Spectrochim. Acta A, 2015, 148: 184  doi: 10.1016/j.saa.2015.04.005

    8. [8]

      8 Gonzales, A.P., Firmino, M.A., Nomura, C.S., Rocha, F.R., Oliveira, P.V. and Gaubeur, I., Anal. Chim. Acta, 2009, 636(2): 198

    9. [9]

      Becker, J.S., Zoriy, M.V., Pickhardt, C., Palomero, G.N. and Zilles, K., Anal. Chem., 2005, 77(10): 3208

    10. [10]

      10 Chen, X.L., Zeng, W.F., Yang, X.D., Lu, X.W., Qu, J.Q. and Liu, R.Y., Chinese J. Polym. Sci., 2016, 34(3): 324

    11. [11]

      Cotruvo, J.A., Jr., Aron, A.T., Ramos, T.K.M. and Chang, C.J., Chem. Soc. Rev., 2015, 44(13): 4400

    12. [12]

      12 Domaille, D.W., Que, E.L. and Chang, C.J., Nat. Chem. Biol., 2008, 4(3): 168

    13. [13]

      Yuan, W.Z., Lu, P., Chen, S.M., Lam, J.W.Y., Wang, Z.M., Liu, Y., Kwok, H.S., Ma, Y.G. and Tang, B.Z., Adv. Mater., 2010, 22(19): 2159

    14. [14]

      14 Hong, Y.N., Chen, S.J., Leung, C.W.T., Lam, J.W.Y., Liu, J.Z., Tseng, N.W., Kwok, R.T.K., Yu, Y., Wang, Z.K. and Tang, B.Z., ACS Appl. Mater. Inter., 2011, 3(9): 3411

    15. [15]

      Feng, H.T., Song, S., Chen, Y.C., Shen, C.H. and Zheng, Y.S., J. Mater. Chem. C, 2014, 2(13): 2353

    16. [16]

      16 Nie, J.Y., Wang, Z.K., Zhang, K. and Hu, Q.L., RSC Adv., 2015, 5(47): 37346

    17. [17]

      Nie, J.Y., Wang, Z.K., Zhang, J.Z., Yang, L., Pang, Y.C. and Hu, Q.L., RSC Adv., 2015, 5(83): 68243

    18. [18]

      18 Huang, X.F., Jia, J.W., Wang, Z.K. and Hu, Q.L., Chinese J. Polym. Sci., 2014, 33(2): 284

    19. [19]

      Zhang, K., Zhuang, P.Y., Wang, Z.K., Li, Y.L., Jiang, Z.Q., Hu, Q.L., Liu, M.Y. and Zhao, Q.X., Carbohydr. Polym., 2012, 90(4): 1515

    20. [20]

      20 Nie, J.Y., Lu, W.T., Ma, J.J., Yang, L., Wang, Z.K., Qin, A. and Hu, Q.L., Sci. Rep., 2015, 5: 7635

    21. [21]

      Fang, J.D., Zhang, K., Jia, J.W., Wang, Z.K. and Hu, Q.L., RSC Adv., 2015, 5(120): 99418

    22. [22]

      22 Wang, Z.K. and Hu, Q.L., Biomed. Mater., 2010, 5(4): 045007

    23. [23]

      Wang, Z.K., Hu, Q.L. and Wang, Y.X., Sci. China Chem., 2011, 54(2): 380

    24. [24]

      24 Huang, X.F., Sun, Y.F., Nie, J.Y., Lu, W.T., Yang, L., Zhang, Z.L., Yin, H.P., Wang, Z.K. and Hu, Q.L., Int. J. Biol. Macromol., 2015, 75: 322

    25. [25]

      Ke, J.H., Wang, Z.K., Li, Y.Z. and Hu, Q.L., Chinese J. Polym. Sci., 2012, 30(3): 436  doi: 10.1007/s10118-012-1133-3

    26. [26]

      26 Wang, Z.K., Hu, Q.L. and Cai, L., Chinese J. Polym. Sci., 2010, 28(5): 801

    27. [27]

      Zhang, K., Zhao, M., Cai, L., Wang, Z.K., Sun, Y.F. and Hu, Q.L., Chinese J. Polym. Sci., 2010, 28(4): 555  doi: 10.1007/s10118-010-9087-9

    28. [28]

      28 Lee, S.J., Lee, S.S., Lah, M.S., Hong, J.M. and Jung, J.H., Chem. Commun., 2006, (43): 4539

    29. [29]

      Wang, Z.K., Chen, S.J., Lam, J.W.Y., Qin, W., Kwok, R.T., Xie, N., Hu, Q. and Tang, B.Z., J. Am. Chem. Soc., 2013, 135(22): 8238

    30. [30]

      30 Jia, J.W., Wang, Z.K., Lu, W.T., Yang, L., Wu, Q.W., Qin, W., Hu, Q.L. and Tang, B.Z., J. Mater. Chem. B, 2014, 2: 8406

    31. [31]

      Wang, Z.K., Liu, Y.L., Jia, J.W., Chen, S.J., Qin, W., Hu, Q.L. and Tang, B.Z., J. Mater. Chem. B, 2016, 4: 5265

    32. [32]

      32 Wang, Z.K., Nie, J.Y., Qin, W., Hu, Q.L. and Tang, B.Z., Nat. Commun., 2016, 7: 12033

    33. [33]

      Li, M., Hong, Y.N., Wang, Z.K., Chen, S.J., Gao, M., Kwok, R.T.K., Qin, W., Lam, J.W.Y., Zheng, Q.C. and Tang, B.Z., Macromol. Rapid Commun., 2013, 34: 767

    34. [34]

      34 Hong, Y.N., Lam, J.W.Y. and Tang, B.Z., Chem. Commun., 2009(29): 4332

    35. [35]

      Huang, H., Shi, F.P., Li, Y.N., Niu, L., Gao, Y., Shah, S.M. and Su, X.G., Sensor Actuat. B: Chem., 2013, 178: 532  doi: 10.1016/j.snb.2013.01.003

    36. [36]

      36 Xu, G.Y., Wang, J.F., Si, G.F., Wang, M.H., Xue, X., Wu, B.X. and Zhou, S.S., Sensor Actuat. B: Chem., 2016, 230: 684

    37. [37]

      Li, Z.A., Lou, X.D., Yu, H.B., Li, Z. and Qin, J.G., Macromolecules, 2008, 41(20): 7433  doi: 10.1021/ma8013096

    38. [38]

      38 Zhang, S.R., Wang, Q., Tian, G.H. and Ge, H.G., Mater. Lett., 2014, 115: 233

    39. [39]

      Wang, X., Chen, Q.Y., Yin, Z.L., Hu, H.P. and Xiao, Z.L., J. Cent. South. Univ. Technol., 2011, 18: 48  doi: 10.1007/s11771-011-0657-y

    40. [40]

      40 Wu, Z.C., Wang, Z.Z., Liu, J., Yin, J.H. and Kuang, S.P., Colloid. Surface. A, 2016, 499: 141

    41. [41]

      Azzam, E.M., Eshaq, G., Rabie, A.M., Bakr, A.A., Abd, E., A.A., El Metwally, A.E. and Tawfik, S.M., Int. J. Biol. Macromol., 2016, 89: 507  doi: 10.1016/j.ijbiomac.2016.05.004

    42. [42]

      42 Cao, W.X., Lin, G.L., Jin, L.S. and Wei, Z.H., Liaoning Chemical Industry (in Chinese), 2007, 36(8): 529

  • 加载中
    1. [1]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    2. [2]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    3. [3]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    4. [4]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    5. [5]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    6. [6]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    7. [7]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    8. [8]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    9. [9]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    10. [10]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    11. [11]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    12. [12]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    13. [13]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    14. [14]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    15. [15]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    16. [16]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    17. [17]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    18. [18]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    19. [19]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    20. [20]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

Metrics
  • PDF Downloads(0)
  • Abstract views(630)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return