Discrete DNA Three-dimensional Nanostructures: the Synthesis and Applications
- Corresponding author: Chuan Zhang, chuanzhang@sjtu.edu.cn
Citation:
Xiao-rong Wu, Chen-wei Wu, Chuan Zhang. Discrete DNA Three-dimensional Nanostructures: the Synthesis and Applications[J]. Chinese Journal of Polymer Science,
;2017, 35(1): 1-24.
doi:
10.1007/s10118-017-1871-3
Seeman, N.C., Annu. Rev. Biochem., 2010, 79:65
doi: 10.1146/annurev-biochem-060308-102244
Seeman, N.C., J. Theor. Biol., 1982, 99:237
doi: 10.1016/0022-5193(82)90002-9
Seeman, N.C. and Kallenbach, N.R., Biophys. J., 1983, 44:201
doi: 10.1016/S0006-3495(83)84292-1
Chen, J. and Seeman, N.C., Nature, 1991, 350:631
doi: 10.1038/350631a0
Zhang, Y. and Seeman, N.C., J. Am. Chem. Soc., 1994, 116:1661
doi: 10.1021/ja00084a006
Fu, T.J. and Seeman, N.C., Biochemistry, 1993, 32:3211
doi: 10.1021/bi00064a003
LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H. and Seeman, N.C., J. Am. Chem. Soc., 2000, 122:1848
doi: 10.1021/ja993393e
Liu, D., Wang, M., Deng, Z., Walulu, R. and Mao, C., J. Am. Chem. Soc., 2004, 126:2324
doi: 10.1021/ja031754r
Yan, H., Zhang, X., Shen, Z. and Seeman, N.C., Nature, 2002, 415:62
doi: 10.1038/415062a
Gu, H., Chao, J., Xiao, S.J. and Seeman, N.C., Nature, 2010, 465:202
doi: 10.1038/nature09026
Li, H., Park, S.H., Reif, J.H., LaBean, T.H. and Yan, H., J. Am. Chem. Soc., 2004, 126:418
doi: 10.1021/ja0383367
Le, J.D., Pinto, Y., Seeman, N.C., Musier-Forsyth, K., Taton, T.A. and Kiehl, R.A., Nano Lett., 2004, 4:2343
doi: 10.1021/nl048635+
Zheng, J., Constantinou, P.E., Micheel, C., Alivisatos, A.P., Kiehl, R.A. and Seeman, N.C., Nano Lett., 2006, 6:1502
doi: 10.1021/nl060994c
Petrillo, M.L., Newton, C.J., Cunningham, R.P., Ma, R.I., Kallenbach, N.R. and Seeman, N.C., Biopolymers, 1988, 27:1337
doi: 10.1002/(ISSN)1097-0282
Yan, H., Park, S.H., Finkelstein, G., Reif, J.H. and LaBean, T.H., Science, 2003, 301:1882
doi: 10.1126/science.1089389
Wei, B., Dai, M. and Yin, P., Nature, 2012, 485:623
doi: 10.1038/nature11075
Rothemund, P.W.K., Nature, 2006, 440:297
doi: 10.1038/nature04586
He, Y., Ye, T., Su, M., Zhang, C., Ribbe, A.E., Jiang, W. and Mao, C., Nature, 2008, 452:198
doi: 10.1038/nature06597
He, Y., Su, M., Fang, P.A., Zhang, C., Ribbe, A.E., Jiang, W. and Mao, C., Angew. Chem. Int. Ed., 2010, 49:748
doi: 10.1002/anie.200904513
Zhang, C., Su, M., He, Y., Zhao, X., Fang, P.A., Ribbe, A.E., Jiang, W. and Mao, C., P. Natl. Acad. Sci. USA, 2008, 105:10665
doi: 10.1073/pnas.0803841105
Zhang, C., Ko, S.H., Su, M., Leng, Y., Ribbe, A.E., Jiang, W. and Mao, C., J. Am. Chem. Soc., 2009, 131:1413
doi: 10.1021/ja809666h
Kuzyk, A., Schreiber, R., Fan, Z., Pardatscher, G., Roller, E.M., Hogele, A., Simmel, F.C., Govorov, A.O. and Liedl, T., Nature, 2012, 483:311
doi: 10.1038/nature10889
Acuna, G.P., Möller, F.M., Holzmeister, P., Beater, S., Lalkens, B. and Tinnefeld, P., Science, 2012, 338:506
doi: 10.1126/science.1228638
Douglas, S.M., Bachelet, I. and Church, G.M., Science, 2012, 335:831
doi: 10.1126/science.1214081
Edwardson, T.G.W., Carmeiro, K.M.M., McLaughlin, C.K., Serpell, C.J. and Sleiman, H.F., Nat. Chem., 2013, 5:868
doi: 10.1038/nchem.1745
Pinheiro, A.V., Han, D., Shih, W.M. and Yan, H., Nat. Nanotechnol., 2011, 6:763
doi: 10.1038/nnano.2011.187
Wilner, O.I. and Willner, I., Chem. Rev., 2012, 112:2528
doi: 10.1021/cr200104q
Lee, D.S., Qian, H., Tay, C.Y. and Leong, D.T., Chem. Soc. Rev., 2016, 45:4199
doi: 10.1039/C5CS00700C
Phan, A.T. and Mergny, J.L., Nucleic Acids Res., 2002, 30:4618
doi: 10.1093/nar/gkf597
Gehring, K., Leroy, J.L. and Gueron, M., Nature, 1993, 363:561
doi: 10.1038/363561a0
Li, Y., Tseng, Y.D., Kwon, S.T., D'espaux, L., Bunch, J.S., Mceuen, P.L. and Luo, D., Nat. Mater., 2004, 3:38
doi: 10.1038/nmat1045
Zhou, T., Chen, P., Niu, L., Jin, J., Liang, D., Li, Z., Yang, Z. and Liu, D., Angew. Chem. Int. Ed., 2012, 51:1127
Winfree, E., Liu, F., Wenzler, L.A. and Seeman, N.C., Nature, 1998, 394:539
doi: 10.1038/28998
Ko, S., Su, M., Zhang, C., Ribbe, A.E., Jiang, W. and Mao, C., Nat. Chem., 2010, 2:1050
doi: 10.1038/nchem.890
Krol, M.A., Olson, N.H., Tate, J., Johnson, J.E., Baker, T.S. and Ahlquist, P., P. Natl. Acad. Sci. USA, 1999, 96:13650
doi: 10.1073/pnas.96.24.13650
Qian, H., Tian, C., Yu, J., Guo, F., Zheng, M., Jiang, W., Dong, Q. and Mao, C., Small, 2014, 10:854
doi: 10.1002/smll.201470030
Tian, C., Li, X., Liu, Z., Jiang, W., Wang, G. and Mao, C., Angew. Chem. Int. Ed., 2014, 126:8179
doi: 10.1002/ange.201400377
Zhang, F., Jiang, S., Wu, S., Li, Y., Mao, C., Liu, Y. and Yan, H., Nat. Nanotechnol., 2015, 10:779
doi: 10.1038/nnano.2015.162
Han, D., Pal, S., Yang, Y., Jiang, S., Nangreave, J., Liu, Y. and Yan, H., Science, 2013, 339:1412
doi: 10.1126/science.1232252
Aldaye, F.A. and Sleiman, H.F., J. Am. Chem. Soc., 2007, 129:13376
doi: 10.1021/ja075966q
Lo, P.K., Altvater, F. and Sleiman, H.F., J. Am. Chem. Soc., 2010, 132:10212
doi: 10.1021/ja1017442
Yang, H., Altvater, F., de Bruijn, A.D., McLaughlin, C.K., Lo, P.K. and Sleiman, H.F., Angew. Chem. Int. Ed., 2011, 50:4620
doi: 10.1002/anie.201007403
Zheng, J., Birktoft, J.J., Chen, Y., Wang, T., Sha, R., Constantinou, P.E., Ginell, S.L., Mao, C. and Seeman, N.C., Nature, 2009, 461:74
doi: 10.1038/nature08274
Shih, W.M., Quispe, J.D. and Joyce, G.F., Nature, 2004, 427:618
doi: 10.1038/nature02307
Rothemund, P.W.K., Nature, 2006, 440:297
doi: 10.1038/nature04586
Douglas, S.M., Marblestone, A.H., Teerapittayanon, S., Vazquez, A., Church, G.M. and Shih, W.M., Nucleic Acids Res., 2009, 37:5001
doi: 10.1093/nar/gkp436
Castro, C.E., Kilchherr, F., Kim, D.N., Shiao, E.L., Wauer, T., Wortmann, P., Bathe, M. and Dietz, H., Nat. Methods, 2011, 8:221
doi: 10.1038/nmeth.1570
Douglas, S.M., Dietz, H., Liedl, T., Högberg, B., Graf, F. and Shih, W.M., Nature, 2009, 459:414
doi: 10.1038/nature08016
Endo, M., Hidaka, K., Kato, T., Namba, K. and Sugiyama, H., J. Am. Chem. Soc., 2009, 131:15570
doi: 10.1021/ja904252e
Kuzuya, A. and Komiyama, M., Chem. Commun., 2009, 4182
Ke, Y., Sharma, J., Liu, M., Jahn, K., Liu, Y. and Yan, H., Nano Lett., 2009, 9:2445
doi: 10.1021/nl901165f
Andersen, E.S., Dong, M., Nielsen, M.M., Jahn, K., Subramani, R., Mamdouh, W., Golas, M.M., Sander, B., Stark, H., Oliveira, C.L.P., Pedersen, J.S., Birkedal, V., Besenbacher, F., Gothelf, K.V. and Kjems, J., Nature, 2009, 459:73
doi: 10.1038/nature07971
Ke, Y., Douglas, S.M., Liu, M., Sharma, J., Cheng, A., Leung, A., Liu, Y., Shih, W.M. and Yan, H., J. Am. Chem. Soc., 2009, 131:15903
doi: 10.1021/ja906381y
Ke, Y., Voigt, N.V., Gothelf, K.V. and Shih, W.M., J. Am. Chem. Soc., 2012, 134:1770
doi: 10.1021/ja209719k
Liedl, T., Hogberg, B., Tytell, J., Ingber, D.E. and Shih, W.M., Nat. Nanotechnol., 2010, 5:520
doi: 10.1038/nnano.2010.107
Dietz, H., Douglas, S.M. and Shih, W.M., Science, 2009, 325:725
doi: 10.1126/science.1174251
Han, D., Pal, S., Liu, Y. and Yan, H., Nat. Nanotechnol., 2010, 5:712
doi: 10.1038/nnano.2010.193
Han, D., Pal, S., Nangreave, J., Deng, Z., Liu, Y. and Yan, H., Science, 2011, 332:342
doi: 10.1126/science.1202998
Benson, E., Mohammed, A., Gardell, J., Masich, S., Czeizler, E., Orponen, P. and Högberg, B., Nature, 2015, 523:441
doi: 10.1038/nature14586
Veneziano, R., Ratanalert, S., Zhang, K., Zhang, F., Yan, H., Chiu, W. and Bathe, M., Science, 2016, 352:1534
doi: 10.1126/science.aaf4388
Ke, Y., Ong, L.L., Shih, W.M. and Yin, P., Science, 2012, 338:1177
doi: 10.1126/science.1227268
Goodman, R.P., Schaap, I.A.T., Tardin, C.F., Erben, C.M., Berry, R.M., Schmidt, C.F. and Turberfield, A.J., Science, 2005, 310:1661
doi: 10.1126/science.1120367
Burns, J.R., Stulz, E. and Howorka, S., Nano Lett., 2013, 13:2351
doi: 10.1021/nl304147f
Iinuma, R., Ke, Y., Jungmann, R., Schlichthaerle, T., Woehrstein, J.B. and Yin, P., Science, 2014, 344:65
doi: 10.1126/science.1250944
Liu, Z., Tian, C., Yu, J., Li, Y., Jiang, W. and Mao, C., J. Am. Chem. Soc., 2015, 137:1730
doi: 10.1021/ja5101307
Li, Y., Tian, C., Liu, Z., Jiang, W. and Mao, C., Angew. Chem. Int. Ed., 2015, 54:5990
doi: 10.1002/anie.201500755
Chidchob, P., Edwardson, T.G.W., Serpell, C.J. and Sleiman, H.F., J. Am. Chem. Soc., 2016, 138:4416
doi: 10.1021/jacs.5b12953
Hamblin, G.D., Carneiro, K.M.M., Fakhoury, J.F., Bujold, K.E. and Sleiman, H.F., J. Am. Chem. Soc., 2012, 134:2888
doi: 10.1021/ja2107492
Chan, M.S. and Lo, P.K., Small, 2014, 10:1255
doi: 10.1002/smll.v10.7
Walsh, A.S., Yin, H., Erben, C.M., Wood, M.J. and Turberfield, A.J., ACS Nano, 2011, 5:5427
doi: 10.1021/nn2005574
Tam, D.Y. and Lo, P.K., J. Nanomaterials, 2015, 2015:765492
Li, J., Fan, C., Pei, H., Shi, J. and Huang, Q., Adv. Mater., 2013, 25:4386
doi: 10.1002/adma.v25.32
Shen, X., Jiang, Q., Wang, J., Dai, L., Zou, G., Wang, Z.G., Chen, W.Q., Jiang, W. and Ding, B., Chem. Commun., 2012, 48:11301
doi: 10.1039/c2cc36185j
Bhatia, D., Surana, S., Chakraborty, S., Koushika, S.P. and Krishnan, Y., Nat. Commun., 2011, 2:339
doi: 10.1038/ncomms1337
Kim, K.R., Kim, D.R., Lee, T., Yhee, J.Y., Kim, B.S., Kwon, I.C. and Ahn, D.R., Chem. Commun., 2013, 49:2010
doi: 10.1039/c3cc38693g
Chang, M., Yang, C.S. and Huang, D.M., ACS Nano, 2011, 5:6156
doi: 10.1021/nn200693a
Kumar, V., Bayda, S., Hadla, M., Caligiuri, I., Russo Spena, C., Palazzolo, S., Kempter, S., Corona, G., Toffoli, G. and Rizzolio, F., J. Cell. Physiol., 2016, 231:106
doi: 10.1002/jcp.v231.1
Zhao, Y.X., Shaw, A., Zeng, X., Benson, E., Nyström, A.M. and Högberg, B., ACS Nano, 2012, 6:8684
doi: 10.1021/nn3022662
Zhang, Q., Jiang, Q., Li, N., Dai, L., Liu, Q., Song, L., Wang, J., Li, Y., Tian, J., Ding, B. and Du, Y., ACS Nano, 2014, 8:6633
doi: 10.1021/nn502058j
Li, J., Pei, H., Zhu, B., Liang, L., Wei, M., He, Y., Chen, N., Li, D., Huang, Q. and Fan, C., ACS Nano, 2011, 5:8783
doi: 10.1021/nn202774x
Schüller, V.J., Heidegger, S., Sandholzer, N., Nickels, P.C., Suhartha, N.A., Endres, S., Bourquin, C. and Liedl, T., ACS Nano, 2011, 5:9696
doi: 10.1021/nn203161y
Lee, H., Lytton-Jean, A.K.R., Chen, Y., Love, K.T., Park, A.I., Karagiannis, E.D., Sehgal, A., Querbes, W., Zurenko, C.S., Jayaraman, M., Peng, C.G., Charisse, K., Borodovsky, A., Manoharan, M., Donahoe, J.S., Truelove, J., Nahrendorf, M., Langer, R. and Anderson, D.G., Nat. Nanotechnol., 2012, 7:389
doi: 10.1038/nnano.2012.73
Pei, H., Liang, L., Yao, G., Li, J., Huang, Q. and Fan, C., Angew. Chem. Int. Ed., 2012, 124:9154
doi: 10.1002/ange.201202356
Zhang, C., Tian, C., Guo, F., Liu, Z., Jiang, W. and Mao, C., Angew. Chem. Int. Ed., 2012, 51:3382
doi: 10.1002/anie.v51.14
Liu, X., Xu, Y., Yu, T., Clifford, C., Liu, Y., Yan, H. and Chang, Y., Nano Lett., 2012, 12:4254
doi: 10.1021/nl301877k
Crawford, R., Erben, C.M., Periz, J., Hall, L.M., Brown, T., Turberfield, A.J. and Kapanidis, A.N., Angew. Chem. Int. Ed., 2013, 52:2284
doi: 10.1002/anie.201207914
Mikkila, J., Eskelinen, A.P., Niemela, E.H., Linko, V., Frilander, M.J., Torma, P.I. and Kostiainen, M.A., Nano Lett., 2014, 14:2196
doi: 10.1021/nl500677j
Pei, H., Lu, N., Wen, Y., Song, S., Liu, Y., Yan, H. and Fan, C., Adv. Mater., 2010, 22:4754
doi: 10.1002/adma.v22:42
Lin, M., Wang, J., Zhou, G., Wang, J., Wu, N., Lu, J., Gao, J., Chen, X., Shi, J., Zuo, X. and Fan, C., Angew. Chem. Int. Ed., 2015, 54:2151
doi: 10.1002/anie.201410720
Zeng, D., Zhang, H., Zhu, D., Li, J., San, L., Wang, Z., Wang, C., Wang, Y., Wang, L., Zuo, X. and Mi, X., Biosens. Bioelectron., 2015, 71:434
doi: 10.1016/j.bios.2015.04.065
Lin, M., Wen, Y., Li, L., Pei, H., Liu, G., Song, H., Zuo, X., Fan, C. and Huang, Q., Anal. Chem., 2014, 86:2285
doi: 10.1021/ac500251t
Ge, Z., Lin, M., Wang, P., Pei, H., Yan, J., Shi, J., Huang, Q., He, D., Fan, C. and Zuo, X., Anal. Chem., 2014, 86:2124
doi: 10.1021/ac4037262
Zhou, G., Lin, M., Song, P., Chen, X., Chao, J., Wang, L., Huang, Q., Huang, W., Fan, C. and Zuo, X., Anal. Chem., 2014, 86:7843
doi: 10.1021/ac502276w
Pei, H., Wan, Y., Li, J., Hu, H., Su, Y., Huang, Q. and Fan, C., Chem. Commun., 2011, 47:6254
doi: 10.1039/c1cc11660f
Chen, X., Zhou, G., Song, P., Wang, J., Gao, J., Lu, J., Fan, C. and Zuo, X., Anal. Chem., 2014, 86:7337
doi: 10.1021/ac500054x
Wen, Y., Pei, H., Wan, Y., Su, Y., Huang, Q., Song, S. and Fan, C., Anal. Chem., 2011, 83:7418
doi: 10.1021/ac201491p
Ge, Z., Pei, H., Wang, L., Song, S. and Fan, C., Sci. China Chem., 2011, 54:1273
doi: 10.1007/s11426-011-4327-6
Bu, N.N., Tang, C.X., He, X.W. and Yin, X.B., Chem. Commun., 2011, 47:7689
doi: 10.1039/c1cc11628b
Bu, N.N., Gao, A., He, X.W. and Yin, X.B., Biosens. Bioelectron., 2013, 43:200
doi: 10.1016/j.bios.2012.11.027
Fu, Y., Zeng, D., Chao, J., Jin, Y., Zhang, Z., Liu, H., Li, D., Ma, H., Huang, Q. and Gothelf, K.V., J. Am. Chem. Soc., 2012, 135:696
Liu, M., Fu, J., Hejesen, C., Yang, Y., Woodbury, N.W., Gothelf, K., Liu, Y. and Yan, H., Nat. Commun., 2013, 4:2127
Dong, S., Zhao, R., Zhu, J., Lu, X., Li, Y., Qiu, S., Jia, L., Jiao, X., Song, S., Fan, C., Hao, R. and Song, H., ACS Appl. Mater. Interfaces, 2015, 7:8834
doi: 10.1021/acsami.5b01438
Li, Z., Su, W., Liu, S. and Ding, X., Biosens. Bioelectron., 2015, 69:287
doi: 10.1016/j.bios.2015.02.031
Xie, S., Dong, Y., Yuan, Y., Chai, Y. and Yuan, R., Anal. Chem., 2016, 88:5218
doi: 10.1021/acs.analchem.6b00276
Dong, Y., Sun, Y., Wang, L., Wang, D., Zhou, T., Yang, Z., Chen, Z., Wang, Q., Fan, Q. and Liu, D., Angew. Chem. Int. Ed., 2014, 53:2607
doi: 10.1002/anie.201310715
Perrault, S.D. and Shih, W.M., ACS Nano, 2014, 8:5132
doi: 10.1021/nn5011914
Yang, Y., Wang, J., Shigematsu, H., Xu, W., Shih, W.M., Rothman, J.E. and Lin, C., Nat. Chem., 2016, 8:476
doi: 10.1038/nchem.2472
Zhao, Z., Jacovetty, E.L., Liu, Y. and Yan, H., Angew. Chem. Int. Ed., 2011, 50:2041
doi: 10.1002/anie.v50.9
Zhang, C., Li, X., Tian, C., Yu, G., Li, Y., Jiang, W. and Mao, C., ACS Nano, 2014, 8:1130
doi: 10.1021/nn406039p
Li, Y., Liu, Z., Yu, G., Jiang, W. and Mao, C., J. Am. Chem. Soc., 2015, 137:4320
doi: 10.1021/jacs.5b01196
Sun, W., Boulais, E., Hakobyan, Y., Wang, W.L., Guan, A., Bathe, M. and Yin, P., Science, 2014, 346:1258361
doi: 10.1126/science.1258361
Tian, Y., Zhang, Y., Wang, T., Xin, H.L., Li, H. and Gang, O., Nat. Mater., 2016, 15:654
doi: 10.1038/nmat4571
Liu, W., Tagawa, M., Xin, H.L., Wang, T., Emamy, H., Li, H., Yager, K.G., Starr, F.W., Tkachenko, A.V. and Gang, O., Science, 2016, 351:582
doi: 10.1126/science.aad2080
Sherman, W.B. and Seeman, N.C., Biophys. J., 2006, 90:4546
doi: 10.1529/biophysj.105.080390
Severcan, I., Geary, C., Chworos, A., Voss, N., Jacovetty, E. and Jaeger, L., Nat. Chem., 2010, 2:772
doi: 10.1038/nchem.733
Guo, P., Nat. Nanotechnol., 2010, 5:833
doi: 10.1038/nnano.2010.231
He, Y. and Liu, D.R., Nat. Nanotechnol., 2010, 5:778
doi: 10.1038/nnano.2010.190
Niu, J., Hili, R. and Liu, D.R., Nat. Chem., 2013, 5:282
doi: 10.1038/nchem.1577
Tian, Y., Li, Y. and Jiang, Y., Acta Polymerica Sinica (in Chinese), 2014, (5):447
Glotzer, S.C. and Solomon, M.J., Nat. Mater., 2007, 6:557
doi: 10.1038/nmat1949
Zhongyu Wang , Lijun Wang , Huaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637
Chunlei Dai , Liying Wang , Xinru You , Yi Zhao , Zhong Cao , Jun Wu . Coffee-derived self-anti-inflammatory polymer as drug nanocarrier for enhanced rheumatoid arthritis treatment. Chinese Chemical Letters, 2025, 36(3): 109869-. doi: 10.1016/j.cclet.2024.109869
Xinqiong Li , Guocheng Rao , Xi Peng , Chan Yang , Yanjing Zhang , Yan Tian , Xianghui Fu , Jia Geng . Direct detection of C9orf72 hexanucleotide repeat expansions by nanopore biosensor. Chinese Chemical Letters, 2024, 35(5): 109419-. doi: 10.1016/j.cclet.2023.109419
Jingting Wang , Yuanyuan Chen , Linlin Han , Shasha Xia , Xingyao Zhang , Peng Xue , Yuejun Kang , Jian Ming , Zhigang Xu . Microenvironment responsive pod-structured astaxanthin nanocarrier for ameliorating inflammatory bowel disease. Chinese Chemical Letters, 2024, 35(7): 109029-. doi: 10.1016/j.cclet.2023.109029
Yating Zheng , Yulan Huang , Jing Luo , Xuqi Peng , Xiran Gui , Gang Liu , Yang Zhang . Supercritical fluid technology: A game-changer for biomacromolecular nanomedicine preparation and biomedical application. Chinese Chemical Letters, 2024, 35(7): 109169-. doi: 10.1016/j.cclet.2023.109169
Zhi Li , Wenpei Li , Shaoping Jiang , Chuan Hu , Yuanyu Huang , Maxim Shevtsov , Huile Gao , Shaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150
Liangliang Jia , Ye Hong , Xinyu He , Ying Zhou , Liujiao Ren , Hongjun Du , Bin Zhao , Bin Qin , Zhe Yang , Di Gao . Fighting hypoxia to improve photodynamic therapy-driven immunotherapy: Alleviating, exploiting and disregarding. Chinese Chemical Letters, 2025, 36(2): 109957-. doi: 10.1016/j.cclet.2024.109957
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
Jiangshan Xu , Weifei Zhang , Zhengwen Cai , Yong Li , Long Bai , Shaojingya Gao , Qiang Sun , Yunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
Yanfei Liu , Yaqin Hu , Yifu Tan , Qiwen Chen , Zhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289
Zhenzhu Wang , Chenglong Liu , Yunpeng Ge , Wencan Li , Chenyang Zhang , Bing Yang , Shizhong Mao , Zeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127
Sifan Du , Yuan Wang , Fulin Wang , Tianyu Wang , Li Zhang , Minghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256
Cheng-Yan Wu , Yi-Nan Gao , Zi-Han Zhang , Rui Liu , Quan Tang , Zhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649
Changlin Su , Wensheng Cai , Xueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095
Zengchao Guo , Weiwei Liu , Tengfei Liu , Jinpeng Wang , Hui Jiang , Xiaohui Liu , Yossi Weizmann , Xuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060
Gaowa Xing , Yuting Shang , Xiaorui Wang , Zengnan Wu , Qiang Zhang , Jiebing Ai , Qiaosheng Pu , Ling Lin . A microfluidic biosensor for multiplex immunoassay of foodborne pathogens agitated by programmed audio signals. Chinese Chemical Letters, 2024, 35(10): 109491-. doi: 10.1016/j.cclet.2024.109491
Yuxin Xiao , Xiaowei Wang , Yutong Yin , Fangchao Yin , Jinchao Li , Zhiyuan Hou , Mashooq Khan , Rusong Zhao , Wenli Wu , Qiongzheng Hu . Distance-based lateral flow biosensor for the quantitative detection of bacterial endotoxin. Chinese Chemical Letters, 2024, 35(12): 109718-. doi: 10.1016/j.cclet.2024.109718
Han Wu , Yumei Wang , Zekai Ren , Hailin Cong , Youqing Shen , Bing Yu . The nanocarrier strategy for crossing the blood-brain barrier in glioma therapy. Chinese Chemical Letters, 2025, 36(4): 109996-. doi: 10.1016/j.cclet.2024.109996