Citation: Xiao-rong Wu, Chen-wei Wu, Chuan Zhang. Discrete DNA Three-dimensional Nanostructures: the Synthesis and Applications[J]. Chinese Journal of Polymer Science, ;2017, 35(1): 1-24. doi: 10.1007/s10118-017-1871-3 shu

Discrete DNA Three-dimensional Nanostructures: the Synthesis and Applications

  • Corresponding author: Chuan Zhang, chuanzhang@sjtu.edu.cn
  • Received Date: 11 August 2016
    Revised Date: 30 August 2016
    Accepted Date: 15 September 2016

    Fund Project: the National Natural Science Foundation of China 21504053the Recruitment Program of Global Experts 15Z127060012

  • Structural DNA nanotechnology, an emerging technique that utilizes the nucleic acid molecule as generic polymer to programmably assemble well-defined and nano-sized architectures, holds great promise for new material synthesis and constructing functional nanodevices for different purposes. In the past three decades, rapid development of this technique has enabled the syntheses of hundreds and thousands of DNA nanostructures with various morphologies at different scales and dimensions. Among them, discrete three-dimensional (3D) DNA nanostructures not only represent the most advances in new material design, but also can serve as an excellent platform for many important applications. With precise spatial addressability and capability of arbitrary control over size, shape, and function, these nanostructures have drawn particular interests to scientists in different research fields. In this review article, we will briefly summarize the development regarding the synthesis of discrete DNA 3D nanostructures with various size, shape, geometry, and topology, including our previous work and recent progress by other groups. In detail, three methods majorly used to synthesize the DNA 3D objects will be introduced accordingly. Additionally, the principle, design rule, as well as pros and cons of each method will be highlighted. As functions of these discrete 3D nanostructures have drawn great interests to researchers, we will further discuss their cutting-edge applications in different areas, ranging from novel material synthesis, new device fabrication, and biomedical applications, etc. Lastly, challenges and outlook of these promising nanostructures will be given based on our point of view.
  • 加载中
    1. [1]

      Seeman, N.C., Annu. Rev. Biochem., 2010, 79:65  doi: 10.1146/annurev-biochem-060308-102244

    2. [2]

      Seeman, N.C., J. Theor. Biol., 1982, 99:237  doi: 10.1016/0022-5193(82)90002-9

    3. [3]

      Seeman, N.C. and Kallenbach, N.R., Biophys. J., 1983, 44:201  doi: 10.1016/S0006-3495(83)84292-1

    4. [4]

      Chen, J. and Seeman, N.C., Nature, 1991, 350:631  doi: 10.1038/350631a0

    5. [5]

      Zhang, Y. and Seeman, N.C., J. Am. Chem. Soc., 1994, 116:1661  doi: 10.1021/ja00084a006

    6. [6]

      Fu, T.J. and Seeman, N.C., Biochemistry, 1993, 32:3211  doi: 10.1021/bi00064a003

    7. [7]

      LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H. and Seeman, N.C., J. Am. Chem. Soc., 2000, 122:1848  doi: 10.1021/ja993393e

    8. [8]

      Liu, D., Wang, M., Deng, Z., Walulu, R. and Mao, C., J. Am. Chem. Soc., 2004, 126:2324  doi: 10.1021/ja031754r

    9. [9]

      Yan, H., Zhang, X., Shen, Z. and Seeman, N.C., Nature, 2002, 415:62  doi: 10.1038/415062a

    10. [10]

      Gu, H., Chao, J., Xiao, S.J. and Seeman, N.C., Nature, 2010, 465:202  doi: 10.1038/nature09026

    11. [11]

      Li, H., Park, S.H., Reif, J.H., LaBean, T.H. and Yan, H., J. Am. Chem. Soc., 2004, 126:418  doi: 10.1021/ja0383367

    12. [12]

      Le, J.D., Pinto, Y., Seeman, N.C., Musier-Forsyth, K., Taton, T.A. and Kiehl, R.A., Nano Lett., 2004, 4:2343  doi: 10.1021/nl048635+

    13. [13]

      Zheng, J., Constantinou, P.E., Micheel, C., Alivisatos, A.P., Kiehl, R.A. and Seeman, N.C., Nano Lett., 2006, 6:1502  doi: 10.1021/nl060994c

    14. [14]

      Petrillo, M.L., Newton, C.J., Cunningham, R.P., Ma, R.I., Kallenbach, N.R. and Seeman, N.C., Biopolymers, 1988, 27:1337  doi: 10.1002/(ISSN)1097-0282

    15. [15]

      Yan, H., Park, S.H., Finkelstein, G., Reif, J.H. and LaBean, T.H., Science, 2003, 301:1882  doi: 10.1126/science.1089389

    16. [16]

      Wei, B., Dai, M. and Yin, P., Nature, 2012, 485:623  doi: 10.1038/nature11075

    17. [17]

      Rothemund, P.W.K., Nature, 2006, 440:297  doi: 10.1038/nature04586

    18. [18]

      He, Y., Ye, T., Su, M., Zhang, C., Ribbe, A.E., Jiang, W. and Mao, C., Nature, 2008, 452:198  doi: 10.1038/nature06597

    19. [19]

      He, Y., Su, M., Fang, P.A., Zhang, C., Ribbe, A.E., Jiang, W. and Mao, C., Angew. Chem. Int. Ed., 2010, 49:748  doi: 10.1002/anie.200904513

    20. [20]

      Zhang, C., Su, M., He, Y., Zhao, X., Fang, P.A., Ribbe, A.E., Jiang, W. and Mao, C., P. Natl. Acad. Sci. USA, 2008, 105:10665  doi: 10.1073/pnas.0803841105

    21. [21]

      Zhang, C., Ko, S.H., Su, M., Leng, Y., Ribbe, A.E., Jiang, W. and Mao, C., J. Am. Chem. Soc., 2009, 131:1413  doi: 10.1021/ja809666h

    22. [22]

      Kuzyk, A., Schreiber, R., Fan, Z., Pardatscher, G., Roller, E.M., Hogele, A., Simmel, F.C., Govorov, A.O. and Liedl, T., Nature, 2012, 483:311  doi: 10.1038/nature10889

    23. [23]

      Acuna, G.P., Möller, F.M., Holzmeister, P., Beater, S., Lalkens, B. and Tinnefeld, P., Science, 2012, 338:506  doi: 10.1126/science.1228638

    24. [24]

      Douglas, S.M., Bachelet, I. and Church, G.M., Science, 2012, 335:831  doi: 10.1126/science.1214081

    25. [25]

      Edwardson, T.G.W., Carmeiro, K.M.M., McLaughlin, C.K., Serpell, C.J. and Sleiman, H.F., Nat. Chem., 2013, 5:868  doi: 10.1038/nchem.1745

    26. [26]

      Pinheiro, A.V., Han, D., Shih, W.M. and Yan, H., Nat. Nanotechnol., 2011, 6:763  doi: 10.1038/nnano.2011.187

    27. [27]

      Wilner, O.I. and Willner, I., Chem. Rev., 2012, 112:2528  doi: 10.1021/cr200104q

    28. [28]

      Lee, D.S., Qian, H., Tay, C.Y. and Leong, D.T., Chem. Soc. Rev., 2016, 45:4199  doi: 10.1039/C5CS00700C

    29. [29]

      Phan, A.T. and Mergny, J.L., Nucleic Acids Res., 2002, 30:4618  doi: 10.1093/nar/gkf597

    30. [30]

      Gehring, K., Leroy, J.L. and Gueron, M., Nature, 1993, 363:561  doi: 10.1038/363561a0

    31. [31]

      Li, Y., Tseng, Y.D., Kwon, S.T., D'espaux, L., Bunch, J.S., Mceuen, P.L. and Luo, D., Nat. Mater., 2004, 3:38  doi: 10.1038/nmat1045

    32. [32]

      Zhou, T., Chen, P., Niu, L., Jin, J., Liang, D., Li, Z., Yang, Z. and Liu, D., Angew. Chem. Int. Ed., 2012, 51:1127

    33. [33]

      Winfree, E., Liu, F., Wenzler, L.A. and Seeman, N.C., Nature, 1998, 394:539  doi: 10.1038/28998

    34. [34]

      Ko, S., Su, M., Zhang, C., Ribbe, A.E., Jiang, W. and Mao, C., Nat. Chem., 2010, 2:1050  doi: 10.1038/nchem.890

    35. [35]

      Krol, M.A., Olson, N.H., Tate, J., Johnson, J.E., Baker, T.S. and Ahlquist, P., P. Natl. Acad. Sci. USA, 1999, 96:13650  doi: 10.1073/pnas.96.24.13650

    36. [36]

      Qian, H., Tian, C., Yu, J., Guo, F., Zheng, M., Jiang, W., Dong, Q. and Mao, C., Small, 2014, 10:854  doi: 10.1002/smll.201470030

    37. [37]

      Tian, C., Li, X., Liu, Z., Jiang, W., Wang, G. and Mao, C., Angew. Chem. Int. Ed., 2014, 126:8179  doi: 10.1002/ange.201400377

    38. [38]

      Zhang, F., Jiang, S., Wu, S., Li, Y., Mao, C., Liu, Y. and Yan, H., Nat. Nanotechnol., 2015, 10:779  doi: 10.1038/nnano.2015.162

    39. [39]

      Han, D., Pal, S., Yang, Y., Jiang, S., Nangreave, J., Liu, Y. and Yan, H., Science, 2013, 339:1412  doi: 10.1126/science.1232252

    40. [40]

      Aldaye, F.A. and Sleiman, H.F., J. Am. Chem. Soc., 2007, 129:13376  doi: 10.1021/ja075966q

    41. [41]

      Lo, P.K., Altvater, F. and Sleiman, H.F., J. Am. Chem. Soc., 2010, 132:10212  doi: 10.1021/ja1017442

    42. [42]

      Yang, H., Altvater, F., de Bruijn, A.D., McLaughlin, C.K., Lo, P.K. and Sleiman, H.F., Angew. Chem. Int. Ed., 2011, 50:4620  doi: 10.1002/anie.201007403

    43. [43]

      Zheng, J., Birktoft, J.J., Chen, Y., Wang, T., Sha, R., Constantinou, P.E., Ginell, S.L., Mao, C. and Seeman, N.C., Nature, 2009, 461:74  doi: 10.1038/nature08274

    44. [44]

      Shih, W.M., Quispe, J.D. and Joyce, G.F., Nature, 2004, 427:618  doi: 10.1038/nature02307

    45. [45]

      Rothemund, P.W.K., Nature, 2006, 440:297  doi: 10.1038/nature04586

    46. [46]

      Douglas, S.M., Marblestone, A.H., Teerapittayanon, S., Vazquez, A., Church, G.M. and Shih, W.M., Nucleic Acids Res., 2009, 37:5001  doi: 10.1093/nar/gkp436

    47. [47]

      Castro, C.E., Kilchherr, F., Kim, D.N., Shiao, E.L., Wauer, T., Wortmann, P., Bathe, M. and Dietz, H., Nat. Methods, 2011, 8:221  doi: 10.1038/nmeth.1570

    48. [48]

      Douglas, S.M., Dietz, H., Liedl, T., Högberg, B., Graf, F. and Shih, W.M., Nature, 2009, 459:414  doi: 10.1038/nature08016

    49. [49]

      Endo, M., Hidaka, K., Kato, T., Namba, K. and Sugiyama, H., J. Am. Chem. Soc., 2009, 131:15570  doi: 10.1021/ja904252e

    50. [50]

      Kuzuya, A. and Komiyama, M., Chem. Commun., 2009, 4182

    51. [51]

      Ke, Y., Sharma, J., Liu, M., Jahn, K., Liu, Y. and Yan, H., Nano Lett., 2009, 9:2445  doi: 10.1021/nl901165f

    52. [52]

      Andersen, E.S., Dong, M., Nielsen, M.M., Jahn, K., Subramani, R., Mamdouh, W., Golas, M.M., Sander, B., Stark, H., Oliveira, C.L.P., Pedersen, J.S., Birkedal, V., Besenbacher, F., Gothelf, K.V. and Kjems, J., Nature, 2009, 459:73  doi: 10.1038/nature07971

    53. [53]

      Ke, Y., Douglas, S.M., Liu, M., Sharma, J., Cheng, A., Leung, A., Liu, Y., Shih, W.M. and Yan, H., J. Am. Chem. Soc., 2009, 131:15903  doi: 10.1021/ja906381y

    54. [54]

      Ke, Y., Voigt, N.V., Gothelf, K.V. and Shih, W.M., J. Am. Chem. Soc., 2012, 134:1770  doi: 10.1021/ja209719k

    55. [55]

      Liedl, T., Hogberg, B., Tytell, J., Ingber, D.E. and Shih, W.M., Nat. Nanotechnol., 2010, 5:520  doi: 10.1038/nnano.2010.107

    56. [56]

      Dietz, H., Douglas, S.M. and Shih, W.M., Science, 2009, 325:725  doi: 10.1126/science.1174251

    57. [57]

      Han, D., Pal, S., Liu, Y. and Yan, H., Nat. Nanotechnol., 2010, 5:712  doi: 10.1038/nnano.2010.193

    58. [58]

      Han, D., Pal, S., Nangreave, J., Deng, Z., Liu, Y. and Yan, H., Science, 2011, 332:342  doi: 10.1126/science.1202998

    59. [59]

      Benson, E., Mohammed, A., Gardell, J., Masich, S., Czeizler, E., Orponen, P. and Högberg, B., Nature, 2015, 523:441  doi: 10.1038/nature14586

    60. [60]

      Veneziano, R., Ratanalert, S., Zhang, K., Zhang, F., Yan, H., Chiu, W. and Bathe, M., Science, 2016, 352:1534  doi: 10.1126/science.aaf4388

    61. [61]

      Ke, Y., Ong, L.L., Shih, W.M. and Yin, P., Science, 2012, 338:1177  doi: 10.1126/science.1227268

    62. [62]

      Goodman, R.P., Schaap, I.A.T., Tardin, C.F., Erben, C.M., Berry, R.M., Schmidt, C.F. and Turberfield, A.J., Science, 2005, 310:1661  doi: 10.1126/science.1120367

    63. [63]

      Burns, J.R., Stulz, E. and Howorka, S., Nano Lett., 2013, 13:2351  doi: 10.1021/nl304147f

    64. [64]

      Iinuma, R., Ke, Y., Jungmann, R., Schlichthaerle, T., Woehrstein, J.B. and Yin, P., Science, 2014, 344:65  doi: 10.1126/science.1250944

    65. [65]

      Liu, Z., Tian, C., Yu, J., Li, Y., Jiang, W. and Mao, C., J. Am. Chem. Soc., 2015, 137:1730  doi: 10.1021/ja5101307

    66. [66]

      Li, Y., Tian, C., Liu, Z., Jiang, W. and Mao, C., Angew. Chem. Int. Ed., 2015, 54:5990  doi: 10.1002/anie.201500755

    67. [67]

      Chidchob, P., Edwardson, T.G.W., Serpell, C.J. and Sleiman, H.F., J. Am. Chem. Soc., 2016, 138:4416  doi: 10.1021/jacs.5b12953

    68. [68]

      Hamblin, G.D., Carneiro, K.M.M., Fakhoury, J.F., Bujold, K.E. and Sleiman, H.F., J. Am. Chem. Soc., 2012, 134:2888  doi: 10.1021/ja2107492

    69. [69]

      Chan, M.S. and Lo, P.K., Small, 2014, 10:1255  doi: 10.1002/smll.v10.7

    70. [70]

      Walsh, A.S., Yin, H., Erben, C.M., Wood, M.J. and Turberfield, A.J., ACS Nano, 2011, 5:5427  doi: 10.1021/nn2005574

    71. [71]

      Tam, D.Y. and Lo, P.K., J. Nanomaterials, 2015, 2015:765492

    72. [72]

      Li, J., Fan, C., Pei, H., Shi, J. and Huang, Q., Adv. Mater., 2013, 25:4386  doi: 10.1002/adma.v25.32

    73. [73]

      Shen, X., Jiang, Q., Wang, J., Dai, L., Zou, G., Wang, Z.G., Chen, W.Q., Jiang, W. and Ding, B., Chem. Commun., 2012, 48:11301  doi: 10.1039/c2cc36185j

    74. [74]

      Bhatia, D., Surana, S., Chakraborty, S., Koushika, S.P. and Krishnan, Y., Nat. Commun., 2011, 2:339  doi: 10.1038/ncomms1337

    75. [75]

      Kim, K.R., Kim, D.R., Lee, T., Yhee, J.Y., Kim, B.S., Kwon, I.C. and Ahn, D.R., Chem. Commun., 2013, 49:2010  doi: 10.1039/c3cc38693g

    76. [76]

      Chang, M., Yang, C.S. and Huang, D.M., ACS Nano, 2011, 5:6156  doi: 10.1021/nn200693a

    77. [77]

      Kumar, V., Bayda, S., Hadla, M., Caligiuri, I., Russo Spena, C., Palazzolo, S., Kempter, S., Corona, G., Toffoli, G. and Rizzolio, F., J. Cell. Physiol., 2016, 231:106  doi: 10.1002/jcp.v231.1

    78. [78]

      Zhao, Y.X., Shaw, A., Zeng, X., Benson, E., Nyström, A.M. and Högberg, B., ACS Nano, 2012, 6:8684  doi: 10.1021/nn3022662

    79. [79]

      Zhang, Q., Jiang, Q., Li, N., Dai, L., Liu, Q., Song, L., Wang, J., Li, Y., Tian, J., Ding, B. and Du, Y., ACS Nano, 2014, 8:6633  doi: 10.1021/nn502058j

    80. [80]

      Li, J., Pei, H., Zhu, B., Liang, L., Wei, M., He, Y., Chen, N., Li, D., Huang, Q. and Fan, C., ACS Nano, 2011, 5:8783  doi: 10.1021/nn202774x

    81. [81]

      Schüller, V.J., Heidegger, S., Sandholzer, N., Nickels, P.C., Suhartha, N.A., Endres, S., Bourquin, C. and Liedl, T., ACS Nano, 2011, 5:9696  doi: 10.1021/nn203161y

    82. [82]

      Lee, H., Lytton-Jean, A.K.R., Chen, Y., Love, K.T., Park, A.I., Karagiannis, E.D., Sehgal, A., Querbes, W., Zurenko, C.S., Jayaraman, M., Peng, C.G., Charisse, K., Borodovsky, A., Manoharan, M., Donahoe, J.S., Truelove, J., Nahrendorf, M., Langer, R. and Anderson, D.G., Nat. Nanotechnol., 2012, 7:389  doi: 10.1038/nnano.2012.73

    83. [83]

      Pei, H., Liang, L., Yao, G., Li, J., Huang, Q. and Fan, C., Angew. Chem. Int. Ed., 2012, 124:9154  doi: 10.1002/ange.201202356

    84. [84]

      Zhang, C., Tian, C., Guo, F., Liu, Z., Jiang, W. and Mao, C., Angew. Chem. Int. Ed., 2012, 51:3382  doi: 10.1002/anie.v51.14

    85. [85]

      Liu, X., Xu, Y., Yu, T., Clifford, C., Liu, Y., Yan, H. and Chang, Y., Nano Lett., 2012, 12:4254  doi: 10.1021/nl301877k

    86. [86]

      Crawford, R., Erben, C.M., Periz, J., Hall, L.M., Brown, T., Turberfield, A.J. and Kapanidis, A.N., Angew. Chem. Int. Ed., 2013, 52:2284  doi: 10.1002/anie.201207914

    87. [87]

      Mikkila, J., Eskelinen, A.P., Niemela, E.H., Linko, V., Frilander, M.J., Torma, P.I. and Kostiainen, M.A., Nano Lett., 2014, 14:2196  doi: 10.1021/nl500677j

    88. [88]

      Pei, H., Lu, N., Wen, Y., Song, S., Liu, Y., Yan, H. and Fan, C., Adv. Mater., 2010, 22:4754  doi: 10.1002/adma.v22:42

    89. [89]

      Lin, M., Wang, J., Zhou, G., Wang, J., Wu, N., Lu, J., Gao, J., Chen, X., Shi, J., Zuo, X. and Fan, C., Angew. Chem. Int. Ed., 2015, 54:2151  doi: 10.1002/anie.201410720

    90. [90]

      Zeng, D., Zhang, H., Zhu, D., Li, J., San, L., Wang, Z., Wang, C., Wang, Y., Wang, L., Zuo, X. and Mi, X., Biosens. Bioelectron., 2015, 71:434  doi: 10.1016/j.bios.2015.04.065

    91. [91]

      Lin, M., Wen, Y., Li, L., Pei, H., Liu, G., Song, H., Zuo, X., Fan, C. and Huang, Q., Anal. Chem., 2014, 86:2285  doi: 10.1021/ac500251t

    92. [92]

      Ge, Z., Lin, M., Wang, P., Pei, H., Yan, J., Shi, J., Huang, Q., He, D., Fan, C. and Zuo, X., Anal. Chem., 2014, 86:2124  doi: 10.1021/ac4037262

    93. [93]

      Zhou, G., Lin, M., Song, P., Chen, X., Chao, J., Wang, L., Huang, Q., Huang, W., Fan, C. and Zuo, X., Anal. Chem., 2014, 86:7843  doi: 10.1021/ac502276w

    94. [94]

      Pei, H., Wan, Y., Li, J., Hu, H., Su, Y., Huang, Q. and Fan, C., Chem. Commun., 2011, 47:6254  doi: 10.1039/c1cc11660f

    95. [95]

      Chen, X., Zhou, G., Song, P., Wang, J., Gao, J., Lu, J., Fan, C. and Zuo, X., Anal. Chem., 2014, 86:7337  doi: 10.1021/ac500054x

    96. [96]

      Wen, Y., Pei, H., Wan, Y., Su, Y., Huang, Q., Song, S. and Fan, C., Anal. Chem., 2011, 83:7418  doi: 10.1021/ac201491p

    97. [97]

      Ge, Z., Pei, H., Wang, L., Song, S. and Fan, C., Sci. China Chem., 2011, 54:1273  doi: 10.1007/s11426-011-4327-6

    98. [98]

      Bu, N.N., Tang, C.X., He, X.W. and Yin, X.B., Chem. Commun., 2011, 47:7689  doi: 10.1039/c1cc11628b

    99. [99]

      Bu, N.N., Gao, A., He, X.W. and Yin, X.B., Biosens. Bioelectron., 2013, 43:200  doi: 10.1016/j.bios.2012.11.027

    100. [100]

      Fu, Y., Zeng, D., Chao, J., Jin, Y., Zhang, Z., Liu, H., Li, D., Ma, H., Huang, Q. and Gothelf, K.V., J. Am. Chem. Soc., 2012, 135:696

    101. [101]

      Liu, M., Fu, J., Hejesen, C., Yang, Y., Woodbury, N.W., Gothelf, K., Liu, Y. and Yan, H., Nat. Commun., 2013, 4:2127

    102. [102]

      Dong, S., Zhao, R., Zhu, J., Lu, X., Li, Y., Qiu, S., Jia, L., Jiao, X., Song, S., Fan, C., Hao, R. and Song, H., ACS Appl. Mater. Interfaces, 2015, 7:8834  doi: 10.1021/acsami.5b01438

    103. [103]

      Li, Z., Su, W., Liu, S. and Ding, X., Biosens. Bioelectron., 2015, 69:287  doi: 10.1016/j.bios.2015.02.031

    104. [104]

      Xie, S., Dong, Y., Yuan, Y., Chai, Y. and Yuan, R., Anal. Chem., 2016, 88:5218  doi: 10.1021/acs.analchem.6b00276

    105. [105]

      Dong, Y., Sun, Y., Wang, L., Wang, D., Zhou, T., Yang, Z., Chen, Z., Wang, Q., Fan, Q. and Liu, D., Angew. Chem. Int. Ed., 2014, 53:2607  doi: 10.1002/anie.201310715

    106. [106]

      Perrault, S.D. and Shih, W.M., ACS Nano, 2014, 8:5132  doi: 10.1021/nn5011914

    107. [107]

      Yang, Y., Wang, J., Shigematsu, H., Xu, W., Shih, W.M., Rothman, J.E. and Lin, C., Nat. Chem., 2016, 8:476  doi: 10.1038/nchem.2472

    108. [108]

      Zhao, Z., Jacovetty, E.L., Liu, Y. and Yan, H., Angew. Chem. Int. Ed., 2011, 50:2041  doi: 10.1002/anie.v50.9

    109. [109]

      Zhang, C., Li, X., Tian, C., Yu, G., Li, Y., Jiang, W. and Mao, C., ACS Nano, 2014, 8:1130  doi: 10.1021/nn406039p

    110. [110]

      Li, Y., Liu, Z., Yu, G., Jiang, W. and Mao, C., J. Am. Chem. Soc., 2015, 137:4320  doi: 10.1021/jacs.5b01196

    111. [111]

      Sun, W., Boulais, E., Hakobyan, Y., Wang, W.L., Guan, A., Bathe, M. and Yin, P., Science, 2014, 346:1258361  doi: 10.1126/science.1258361

    112. [112]

      Tian, Y., Zhang, Y., Wang, T., Xin, H.L., Li, H. and Gang, O., Nat. Mater., 2016, 15:654  doi: 10.1038/nmat4571

    113. [113]

      Liu, W., Tagawa, M., Xin, H.L., Wang, T., Emamy, H., Li, H., Yager, K.G., Starr, F.W., Tkachenko, A.V. and Gang, O., Science, 2016, 351:582  doi: 10.1126/science.aad2080

    114. [114]

      Sherman, W.B. and Seeman, N.C., Biophys. J., 2006, 90:4546  doi: 10.1529/biophysj.105.080390

    115. [115]

      Severcan, I., Geary, C., Chworos, A., Voss, N., Jacovetty, E. and Jaeger, L., Nat. Chem., 2010, 2:772  doi: 10.1038/nchem.733

    116. [116]

      Guo, P., Nat. Nanotechnol., 2010, 5:833  doi: 10.1038/nnano.2010.231

    117. [117]

      He, Y. and Liu, D.R., Nat. Nanotechnol., 2010, 5:778  doi: 10.1038/nnano.2010.190

    118. [118]

      Niu, J., Hili, R. and Liu, D.R., Nat. Chem., 2013, 5:282  doi: 10.1038/nchem.1577

    119. [119]

      Tian, Y., Li, Y. and Jiang, Y., Acta Polymerica Sinica (in Chinese), 2014, (5):447

    120. [120]

      Glotzer, S.C. and Solomon, M.J., Nat. Mater., 2007, 6:557  doi: 10.1038/nmat1949

  • 加载中
    1. [1]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    2. [2]

      Chunlei DaiLiying WangXinru YouYi ZhaoZhong CaoJun Wu . Coffee-derived self-anti-inflammatory polymer as drug nanocarrier for enhanced rheumatoid arthritis treatment. Chinese Chemical Letters, 2025, 36(3): 109869-. doi: 10.1016/j.cclet.2024.109869

    3. [3]

      Xinqiong LiGuocheng RaoXi PengChan YangYanjing ZhangYan TianXianghui FuJia Geng . Direct detection of C9orf72 hexanucleotide repeat expansions by nanopore biosensor. Chinese Chemical Letters, 2024, 35(5): 109419-. doi: 10.1016/j.cclet.2023.109419

    4. [4]

      Jingting WangYuanyuan ChenLinlin HanShasha XiaXingyao ZhangPeng XueYuejun KangJian MingZhigang Xu . Microenvironment responsive pod-structured astaxanthin nanocarrier for ameliorating inflammatory bowel disease. Chinese Chemical Letters, 2024, 35(7): 109029-. doi: 10.1016/j.cclet.2023.109029

    5. [5]

      Yating ZhengYulan HuangJing LuoXuqi PengXiran GuiGang LiuYang Zhang . Supercritical fluid technology: A game-changer for biomacromolecular nanomedicine preparation and biomedical application. Chinese Chemical Letters, 2024, 35(7): 109169-. doi: 10.1016/j.cclet.2023.109169

    6. [6]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    7. [7]

      Liangliang JiaYe HongXinyu HeYing ZhouLiujiao RenHongjun DuBin ZhaoBin QinZhe YangDi Gao . Fighting hypoxia to improve photodynamic therapy-driven immunotherapy: Alleviating, exploiting and disregarding. Chinese Chemical Letters, 2025, 36(2): 109957-. doi: 10.1016/j.cclet.2024.109957

    8. [8]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    9. [9]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    10. [10]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

    11. [11]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    12. [12]

      Yanfei LiuYaqin HuYifu TanQiwen ChenZhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289

    13. [13]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    14. [14]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    15. [15]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    16. [16]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    17. [17]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    18. [18]

      Gaowa XingYuting ShangXiaorui WangZengnan WuQiang ZhangJiebing AiQiaosheng PuLing Lin . A microfluidic biosensor for multiplex immunoassay of foodborne pathogens agitated by programmed audio signals. Chinese Chemical Letters, 2024, 35(10): 109491-. doi: 10.1016/j.cclet.2024.109491

    19. [19]

      Yuxin XiaoXiaowei WangYutong YinFangchao YinJinchao LiZhiyuan HouMashooq KhanRusong ZhaoWenli WuQiongzheng Hu . Distance-based lateral flow biosensor for the quantitative detection of bacterial endotoxin. Chinese Chemical Letters, 2024, 35(12): 109718-. doi: 10.1016/j.cclet.2024.109718

    20. [20]

      Han WuYumei WangZekai RenHailin CongYouqing ShenBing Yu . The nanocarrier strategy for crossing the blood-brain barrier in glioma therapy. Chinese Chemical Letters, 2025, 36(4): 109996-. doi: 10.1016/j.cclet.2024.109996

Metrics
  • PDF Downloads(0)
  • Abstract views(870)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return