Citation: Cao Jing, Wen Na, Zheng Yu-ying. Effect of Long Chain Branching on the Rheological Behavior, Crystallization and Mechanical Properties of Polypropylene Random Copolymer[J]. Chinese Journal of Polymer Science, ;2016, 34(9): 1158-1171. doi: 10.1007/s10118-016-1830-4 shu

Effect of Long Chain Branching on the Rheological Behavior, Crystallization and Mechanical Properties of Polypropylene Random Copolymer

  • Corresponding author: Zheng Yu-ying, yyzheng@fzu.edu.cn
  • Received Date: 6 February 2016
    Revised Date: 18 March 2016
    Accepted Date: 18 March 2016

    Fund Project: the Foundation for Development of Science and Technology of Fuzhou University No. 2011-XY-1

  • Long chain branched polypropylene random copolymers (LCB-PPRs) were prepared via reactive extrusion with the addition of dicumyl peroxide (DCP) and various amounts of 1,6-hexanediol diacrylate (HDDA) into PPR. Fourier transform infrared spectrometer (FTIR) was applied to confirm the existence of branching and investigate the grafting degree for the modified PPRs. Melt flow index (MFI) and oscillatory shear rheological properties including complex viscosity, storage modulus, loss tangent and the Cole-Cole plots were studied to differentiate the LCB-PPRs from linear PPR. Differential scanning calorimetry (DSC) and polarized light microscopy (PLM) were used to study the melting and crystallization behavior and the spherulite morphology, respectively. Qualitative and quantitative analyses of rheological curves demonstrated the existence of LCB. The effect of the LCB on crystalline morphology, crystallization behavior and molecular mobility, and, thereby, the mechanical properties were studied and analyzed. Due to the entanglements between molecular chains and the nucleating effect of LCB, LCB-PPRs showed higher crystallization temperature and crystallinity, higher crystallization rate, more uniformly dispersed and much smaller crystallite compared with virgin PPR, thus giving rise to significantly improve impact strength. Moreover, the LCB-PPRs exhibited the improved yield strength. The mobility of the molecular chain segments, as demonstrated by dynamic mechanical analysis (DMA), was improved for the modified PPRs, which also contributed to the improvement of their mechanical properties.
  • 加载中
    1. [1]

       Ficker, H.K. and Walker, D.A., Plast. Rubber. Process. Appl., 1990, 14: 103

    2. [2]

      Karger-Kocsis, J.,"Polypropylene: Structure, blends and composites", Chapman and Hall: London, 1995, Volume 2

    3. [3]

      Mileve, D., Androsch, R. and Radusch, H.J., Polym. Bull., 2008, 61: 643

    4. [4]

      Wang, Y., Cheng, S. and Wang, S.Q., J. Rheol., 1998, 14: E5

    5. [5]

      Lagendijk, R.P., Hogt A.H., Buijtenhuijs, A. and Gotsis, A.D., Polymer, 2001, 42: 10035  doi: 10.1016/S0032-3861(01)00553-5

    6. [6]

      Tang, H.X., Dai, W.L. and Chen, B.Q., Polym. Eng. Sci., 2008, 48: 1339  doi: 10.1002/(ISSN)1548-2634

    7. [7]

      Tian, J.H., Yu, W. and Zhou, C.X., Polymer, 2006, 47: 7962  doi: 10.1016/j.polymer.2006.09.042

    8. [8]

      Auhl, D., Stange, J. and Münstedt, H., Macromolecules, 2004, 37: 9465  doi: 10.1021/ma030579w

    9. [9]

      Zhang, Z.N., Yu, F.Y., Yu, W. and Zhang, H.B., J. Polym. Res., 2015, 22: 198  doi: 10.1007/s10965-015-0845-9

    10. [10]

      He, C.X., Costeux, S., Wood-Adams, P. and Dealy, J.M., Polymer, 2003, 44: 7181  doi: 10.1016/j.polymer.2003.09.009

    11. [11]

      Gotiss, A.D., Zeevenhoven, B.L.F. and Hogt, A.H., Polym. Eng. Sci., 2004, 44: 973  doi: 10.1002/(ISSN)1548-2634

    12. [12]

      Weng, W., Hu, W., Dekmerzian, A.H. and Ruff, C.J., Macormolecules, 2002, 35: 3838  doi: 10.1021/ma020050j

    13. [13]

      Langston, J.A., Colby, R.H., Chung, T.C.M., Shimizu, F., Suzuki, T. and Aoki, M., Macromolecules, 2007, 40: 2712  doi: 10.1021/ma062111+

    14. [14]

      Langston, J.A., Colby, R.H., Shimizu, F. and Suzuki, T., Macromol. Symp., 2007, 260: 34  doi: 10.1002/(ISSN)1521-3900

    15. [15]

      Krause, B., Stephan, M. and Volkland, S., J. Appl. Polym. Sci., 2005, 99: 260

    16. [16]

      Ali, Z.I., Youssef, H.A., Said, H.M. and Saleh, H.H., Adv. Polym. Technol., 2006, 25: 208  doi: 10.1002/(ISSN)1098-2329

    17. [17]

      Borsig, E., Duin, M.V., Gotsis, A.D. and Picchioni, F., Eur. Polym. J., 2008, 44: 200  doi: 10.1016/j.eurpolymj.2007.10.008

    18. [18]

      Graebling, D., Macromolecules, 2002, 35: 4602  doi: 10.1021/ma0109469

    19. [19]

      Su, F.H. and Huang, H.X., J. Appl. Polym. Sci., 2009, 113: 2126  doi: 10.1002/app.v113:4

    20. [20]

      Su, F.H. and Huang, H.X., Adv. Polym. Technol., 2009, 28: 16  doi: 10.1002/adv.v28:1

    21. [21]

      Yamaguchi, M. and Wagner, M.H., Polymer, 2006, 47: 3629  doi: 10.1016/j.polymer.2006.03.052

    22. [22]

      Hadjichristidis, N., Xenidou, M., Iatrou, H., Pitsikalis, M., Poulos, Y., Avgeropoulos, A., Sioula, S., Paraskeva, S., Velis, G., Mendelson, R.A., Garcia-Franco, C.A., Sun, T. and Ruff, C.J., Macromolecules, 2000, 33: 2424  doi: 10.1021/ma991670w

    23. [23]

      Cotts, P.M., Cuan, Z., McCord, E. and McLain, S., Macromolecules, 2000, 33: 6945  doi: 10.1021/ma000926r

    24. [24]

      Wang, W.J., Kharchenko, S., Migler, K. and Zhu, S., Polymer, 2004, 45: 6495  doi: 10.1016/j.polymer.2004.07.035

    25. [25]

      Xing, H., Jiang, Z., Zhang, Z., Qiu, J., Wang, Y., Ma, L. and Tang, T., Polymer, 2012, 53: 947  doi: 10.1016/j.polymer.2012.01.004

    26. [26]

      DeGrott, A.W., Karjala, T.P., Taha, N. and Johnson, M.S., "Long chain branching measurements of polyethylenes: a tool-box of techniques. Paper presented at international workshop on branched polymers for performance", Spring 2004

    27. [27]

      McKee, M.G., Unal, S. and Long, T.E., Prog. Polym. Sci., 2005, 30: 507  doi: 10.1016/j.progpolymsci.2005.01.009

    28. [28]

      Salazar, A., Rodríguez, S., Navarro, J.M., Ureña, A. and Rodríguez, J., E-polymers, 2007, no. 021

    29. [29]

      Wan, D., Li, M., Zhang, Z., Xing H., Wang, L., Jiang, Z., Zhang, G. and Tang, T., Polym. Degrad. Stab., 2012, 97: 40  doi: 10.1016/j.polymdegradstab.2011.10.016

    30. [30]

      Su, F.H. and Huang, H.X., Polym. Eng. Sci., 2010, 50: 342  doi: 10.1002/pen.21544

    31. [31]

      Wang, L., Wan, D., Zhang, Z.J., Liu, F., Xing, H.P., Wang, Y.H. and Tang, T., Macromolecules, 2011, 44: 4167  doi: 10.1021/ma200604y

    32. [32]

      Zhao, W.Y., Huang, Y.J., Liao, X. and Yang, Q., Polymer, 2013, 54: 1455  doi: 10.1016/j.polymer.2012.12.073

    33. [33]

      Malmberg, A., Gabriel, C., Steffl, T., Mu¨nstedt, H. and Lo¨fgren, B., Macromolecules, 2002, 35: 1038  doi: 10.1021/ma010753l

    34. [34]

      Wood-Adams, P.M. and Dealy, J.M., Macromolecules, 2000, 33: 7489  doi: 10.1021/ma991533z

    35. [35]

      Cross, M.M.J., Colloid. Sci., 1965, 20: 417  doi: 10.1016/0095-8522(65)90022-X

    36. [36]

      Franco, C.G., Srinivas, S. and Lohse, D.J., Macromolecules, 2001, 34: 3115  doi: 10.1021/ma0021794

    37. [37]

      Tian, J.H., Yu, W. and Zhou, C.H., J. Appl. Polym. Sci., 2007, 104: 3592  doi: 10.1002/(ISSN)1097-4628

    38. [38]

      Gohil, R.M. and Phillips, P.J., Polymer, 1986, 27: 1687  doi: 10.1016/0032-3861(86)90262-4

    39. [39]

      Ferrer-Balas, D., Maspoch, M.L., Martinez, B. and Santana, O.O., Polymer, 2001, 42: 1697  doi: 10.1016/S0032-3861(00)00487-0

    40. [40]

      Nielsen, L.E and Landel, R.F., "Mechanical properties of polymers and composites", 2nd ed., Marcel Deker, New York, 1994

    41. [41]

      Read, B.E., Polymer, 1989, 30: 1439  doi: 10.1016/0032-3861(89)90213-9

  • 加载中
    1. [1]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    2. [2]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    3. [3]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    4. [4]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

    5. [5]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    6. [6]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    7. [7]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    8. [8]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    9. [9]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    10. [10]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    11. [11]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    12. [12]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    13. [13]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    14. [14]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    15. [15]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    16. [16]

      Tingting HuangZhuanlong DingHao LiuPing-An ChenLongfeng ZhaoYuanyuan HuYifan YaoKun YangZebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117

    17. [17]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    18. [18]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    19. [19]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    20. [20]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

Metrics
  • PDF Downloads(0)
  • Abstract views(608)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return