Citation: Jian-hua Li, Shuang-shuang Wang, De-bin Zhang, Xing-xing Ni, Qi-qing Zhang. Amino Acids Functionalized Graphene Oxide for Enhanced Hydrophilicity and Antifouling Property of Poly(vinylidene fluoride) Membranes[J]. Chinese Journal of Polymer Science, ;2016, 34(7): 805-819. doi: 10.1007/s10118-016-1808-2 shu

Amino Acids Functionalized Graphene Oxide for Enhanced Hydrophilicity and Antifouling Property of Poly(vinylidene fluoride) Membranes

  • Corresponding author: Jian-hua Li, jhli_2005@163.com Qi-qing Zhang, zhangqiq@126.com
  • Received Date: 16 December 2015
    Revised Date: 9 March 2016
    Accepted Date: 18 March 2016

  • Herein, functionalized graphene oxide (GO) was prepared by the covalent functionalization with amino acids (lysine, glycine, glutamic acid and tyrosine) in this study. Zeta potential results demonstrated that covalent functionalization of GO with amino acids was favourable for their homogeneous dispersion in water and organic solvents. Based on the higher absolute value of zeta potential and the better dipersion stability of GO-lysine, the PVDF/GO-lysine hybrid membranes were then prepared via the phase inversion induced by immersion precipitation technique. SEM images showed a better pore diameter and porosity distribution on the PVDF/GO-lysine membrane surface. The zeta potential absolute value of the PVDF/GO-lysine membrane surface was higher than that of the virgin PVDF membrane. Furthermore, the PVDF/GO-lysine membranes surface exhibited good hydrophilicity. The water flux of PVDF/GO-lysine membranes can reach two times of that of the virgin PVDF membrane. And the BSA adsorbed amount on PVDF/GO-lysine surface was decreased to 0.82 mg/cm2 for PVDF/GO-lysine-8% membrane. Filtration experiment results indicated that the fouling resistance was significantly improved for the PVDF/GO-lysine membranes. As a result, lysine functionalized GO will provide a promising method to fabricate graphene oxide based hybrid membranes with effective antifouling property and hydrophilicity.
  • 加载中
    1. [1]

      Li, J.H., Shao, X.S., Zhou, Q., Li, M.Z. and Zhang, Q.Q., Appl. Surf. Sci., 2013, 265: 663

    2. [2]

      Mahdie, S.K. and Vahid, V., Ind. Eng. Chem. Res., 2014, 53: 13370

    3. [3]

      Liu, J., Shen, X., Zhao, Y.P. and Chen, L., Ind. Eng. Chem. Res., 2013, 52: 18392

    4. [4]

      Chia-Hung, K., Chen, G.J., Yawo-Kuo, T., Liu, Y.C. and Chwen-Jen S., Ind. Eng. Chem. Res., 2012, 51: 5141

    5. [5]

      Wang, J.H., Zhang, Y.H., Xu, Y.Y. and Zhu, B.K., Chinese J. Polym. Sci., 2014, 32(2): 143

    6. [6]

      Lee, N., Amy, G., Croué, J.P. and Buisson, H., Water Res., 2004, 38: 4511

    7. [7]

      Xu, Z.W., Zhang, J.G., Shan, M.J., Li, Y.L., Li, B.D. and Niu, J.R., J. Membr. Sci., 2014, 458: 1

    8. [8]

      Nabe, A., Staude, E. and Belfort, G., J. Membr. Sci., 1997, 133: 57

    9. [9]

      Schulze, A., Maitz, M.F., Zimmermann, R., Marquardt, B., Fischer, M., Werner, C., Wenta, M. and Thomas, I., RSC Adv., 2013, 3: 22518

    10. [10]

      Meng, J.Q., Chen, C.L., Huang, L.P., Du, Q.Y. and Zhang, Y.F., Appl. Surf. Sci., 2011, 257: 6282

    11. [11]

      Yuan, T., Meng, J.Q., Hao, T.Y., Wang, Z.H. and Zhang, Y.F., ACS Appl. Mater. Interfaces, 2015, 7: 14896

    12. [12]

      Yuan, J., Meng, J.Q., Kang, Y.L., Du, Q.Y. and Zhang, Y.F., Appl. Surf. Sci., 2012, 258: 2856

    13. [13]

      Sun, Q., Zhang, Y.F., Chen, C.L., Guo, X.Z. and Meng, J.Q., Chinese J. Polym. Sci., 2014, 32(7): 880

    14. [14]

      Singh, A.K., Singh, P., Mishra, S. and Shahi, V.K., J. Mater. Chem., 2012, 22: 1834

    15. [15]

      Majeed, S., Fierro, D., Buhr, K., Wind, J., Du, B., Boschetti-de-Fierro, A. and Abetz, V., J. Membr. Sci., 2012, 403-404: 101

    16. [16]

      Sui, Y., Wang, Z.N., Gao, X.L. and Gao, C.J., J. Membr. Sci., 2012, 413-414: 38

    17. [17]

      Venault., A., Liu, Y.H., Wu, J.R., Yang, H.S., Chang, Y., Lai, J.Y. and Aimar, P., J. Membr. Sci., 2014, 450: 340

    18. [18]

      Wu, M.Y., Meng, S.J., Wang, Q., Huang, W. and Dong, X.C., ACS Appl Mater Inter., 2015, 7: 21089

    19. [19]

      Xia, S.J. and Ni, M.Z., J. Membr. Sci., 2015, 473: 54

    20. [20]

      Cao, K.T., Jiang, Z.Y., Zhao, J., Zhao, C.H., Gao, C.Y., Pan, F.S., Wang, B.Y., Cao, X.Z. and Yang, J., J. Membr. Sci., 2014, 469: 272

    21. [21]

      Zhu, Y.W., Murali, S., Cai, W.W., Li, X.S., Suk, J.W., Jeffrey, R.P. and Rodney, S. R., Adv. Mater., 2010, 22: 3906

    22. [22]

      Konkena, B. and Vasudevan, S., Langmuir., 2012, 28: 12432

    23. [23]

      Konkena, B. and Vasudevan, S., J. Phys. Chem. C., 2015, 119: 6356

    24. [24]

      Loh, C.H. and Wang, R., J. Membr. Sci., 2013, 446: 492

    25. [25]

      Birkner, M. and Ulbricht, M., J. Membr. Sci., 2015, 494: 57

    26. [26]

      Yang, R., Goktekin, E. and Karen K. G., Langmuir., 2015, 31: 11895

    27. [27]

      Duan, X.B. and Randy S. L., Biomaterial., 2002, 23: 1197

    28. [28]

      Shi, Q., Su, Y.L., Chen, W.J., Peng, J.M., Nie, L.Y., Zhang, L. and Jiang, Z.Y., J. Membr. Sci., 2011, 366: 398

    29. [29]

      Wang, J., Yao, Y., Ji, B., Huang, W., Zhou, Y.F. and Yan, D.Y., Chinese J. Polym. Sci., 2011, 29(2): 241

    30. [30]

      Jayalakshmi, A., Rajesh, S. and Mohan, D., Appl. Surf. Sci., 2012, 258: 9770

    31. [31]

      Lapointe, J.F., Gauthier, S.E., Pouliot, Y. and Bouchard, C., J. Membr. Sci., 2005, 261: 36

    32. [32]

      Dinh K.D. and Euij, K., Nanoscale Re Lett., 2015, 10: 6

    33. [33]

      Daniela, C.M., Dmitry, V.K., Jacob, M.B., Alexander, S., Sun, Z.Z., Alexander, S., Lawrence, B.A., Lu, W. and James, M.T., ACS Nano., 2010, 8 : 4806

    34. [34]

      Liu, H.Y., Cheng, J., Chen, F.J., Hou, F.P., Bai, D.C., Xi, P.X. and Zeng, Z.Z., ACS Appl. Mater. Interfaces., 2014, 6: 3132

    35. [35]

      Kuilla, T., Bhadra, S., Yao, D., Kim, N.H., Bose, S. and Lee, J.H., Prog. Polym. Sci., 2010, 35: 1350

    36. [36]

      Callejas Fernández, J., de las Nieves, F.J., Martínez García, R. and Hidalgo-Alvarez, R., Colloids Surf., 1991, 61: 123

    37. [37]

      Kong, J.Y., Choi, M.C., Kim, G.Y., Park, J.J., Selvaraj, M., Han, M. and Ha, C.S., Eur. Polym. J., 2012, 48: 1394

    38. [38]

      Compton, O.C., Dikin, D.A., Putz, K.W., Brinson, L.C. and Nguyen, S.T., Adv. Mater., 2010, 22: 892

    39. [39]

      Yang, Y. and Liu, T., Appl. Surf. Sci., 2011, 257: 8950

    40. [40]

      Luan, V.H., Tien, H.N. and Hur, S.H., J. Colloid Interface Sci., 2015, 6: 437

    41. [41]

      Luan, V.H., Tien, H.N., Hoa, L.T., Hien, N.T.M., Oh, E.S. and Chung, J., J. Mater. Chemistry A., 2013,1: 208

    42. [42]

      Hester, J.F., Banerjee, P., Won, Y.Y., Akthakul, A., Acar, M.H. and Mayes. A.M., Macromolecules., 2002, 35: 7652

    43. [43]

      Wang, Z., Yu, H., Xia, J., Zhang, F., Li, F., Xia, Y. and Li, Y., Desalination., 2012, 299: 50

    44. [44]

      Shi, Q., Su, Y.L., Chen, W.J., Peng, J.M., Nie, L.Y., Zhang, L. and Jiang, Z.Y., J. Membr. Sci., 2011, 366: 398

  • 加载中
    1. [1]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    2. [2]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    3. [3]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    4. [4]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    5. [5]

      Lingna WangChenxin TianRuobin DaiZhiwei Wang . Eco-friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(9): 109356-. doi: 10.1016/j.cclet.2023.109356

    6. [6]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

    7. [7]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    8. [8]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    9. [9]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    10. [10]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    11. [11]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    12. [12]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    13. [13]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    14. [14]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    15. [15]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    16. [16]

      Hongmei YuBaoxi ZhangMeiju LiuCheng XingGuorong HeLi ZhangNingbo GongYang LuGuanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032

    17. [17]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    18. [18]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    19. [19]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    20. [20]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

Metrics
  • PDF Downloads(0)
  • Abstract views(614)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return