Citation: Ya-juan Su, Jian-hua Huang. Self-assembly Behavior of Rod-Coil-Rod Triblock Copolymers within a Planar Slit[J]. Chinese Journal of Polymer Science, ;2016, 34(7): 838-849. doi: 10.1007/s10118-016-1803-7 shu

Self-assembly Behavior of Rod-Coil-Rod Triblock Copolymers within a Planar Slit

  • Corresponding author: Jian-hua Huang, jhhuang@zstu.edu.cn
  • Received Date: 14 January 2016
    Revised Date: 14 February 2016
    Accepted Date: 14 February 2016

    Fund Project: was financially supported by the National Natural Science Foundation of China 21574117

  • The self-assembly behavior of sphere-forming R5C30R5 triblock copolymers within a planar slit is studied by performing dissipative particle dynamics simulations. A sequence of novel structures which are not observed in bulk are formed within slits, including wetting layers, island-like structure, parallel cylinders, perpendicular cylinders and cross-cylindrical structures. Perpendicular cylinders are always formed before the increase in the layers of parallel cylinders. A phase diagram of the assembled structures with respective to the slit property and height is thus presented. The rod length is found to have a significant impact on the rod alignment, and a disordered-ordered transition of rod orientation occurs with an increase in the length of rod blocks. Some special structures, such as parallel half-cylinders and arrowhead-shaped morphology, are observed when the rod length increases to a certain extent. Our results show that the property and height of the slit and rod length all influence the self-assembly of rod-coil-rod triblock copolymers.
  • 加载中
    1. [1]

      Matsen, M.W. and Schick, M., Phys. Rev. Lett., 1994, 72: 2660

    2. [2]

      Tuzar, Z. and Kratochvil, P., "Micelles of block- and graft-copolymers in solutions", Plenum Press, New York, 1993

    3. [3]

      Chen, J.Z., Zhang, C.X., Sun, Z.Y. and An, L.J., J. Chem. Phys., 2007, 127: 024105

    4. [4]

      Matsen, M.W. and Thompson, R.B., J. Chem. Phys., 1999, 111: 7139

    5. [5]

      Wang, Q., Nealey, P.F. and de Pablo, J.J., Macromolecules, 2003, 36: 1731

    6. [6]

      Chai, A.H. and Zhang, L.X., Chinese J. Polym. Sci., 2011, 29(6): 684

    7. [7]

      Yin, Y., Sun, P., Jiang, R. and Li, B.H., J. Chem. Phys., 2006, 124: 184708

    8. [8]

      Chen, J.T., Thomas, E.L., Ober, C.K. and Mao, G., Science, 1996, 273: 343

    9. [9]

      Shi, L.Y., Pan, Y., Zhang, Q.K., Zhou, Y., Fan, X.H. and Shen, Z.H., Chinese J. Polym. Sci., 2014, 32(11): 1524

    10. [10]

      Pereira, G.G. and Williams, D.R.M., Macromolecules, 2000, 33: 3166

    11. [11]

      Yang, G., Tang, P., Yang, Y.L. and Wang, Q., J. Phys. Chem. B, 2010, 114: 14897

    12. [12]

      Wang, Q., Soft Matter, 2011, 7: 3711

    13. [13]

      Cheng, L.S. and Cao, D.P., J. Chem. Phys., 2008, 128: 074902

    14. [14]

      Nowak, C. and Vilgis, T.A., J. Chem. Phys., 2006, 124: 234909

    15. [15]

      Huang, J.H., Ma, Z.X. and Luo, M.B., Langmuir, 2014, 30: 6267

    16. [16]

      Shah, M. and Ganesan, V., Macromolecules, 2010, 43: 543

    17. [17]

      Pryamitsyn, V. and Ganesan, V., J. Chem. Phys., 2004, 120: 5824

    18. [18]

      Ludwigs, S., Krausch, G., Antonietti, M. and Schlaad, H., Macromolecules, 2005, 38: 7532

    19. [19]

      Park, J.W. and Cho, Y.H., Langmuir, 2006, 22: 10898

    20. [20]

      Olsen, B.D., Li, X., Wang, J. and Segalman, R.A., Macromolecules, 2007, 40: 3287

    21. [21]

      Heiser, T., Adamopoulos, G., Brinkmann, M. and Hadziioannou, G., Thin Solid Films, 2006, 511: 219

    22. [22]

      Xia, Y.D., Chen, J.Z., Shi, T.F. and An, L.J., Chinese J. Polym. Sci., 2013, 31(9): 1242

    23. [23]

      Kim, J.H., Rahman, M.S., Lee, J.S. and Park, J.W., Macromolecules, 2008, 41: 3181

    24. [24]

      Kim, H., Kim, T.G. and Park, J.W., Macromol. Res., 2013, 21: 815

    25. [25]

      Ibarboure, E. and Rodríguez-Hernández, J., Eur. Polym. J., 2010, 46: 891

    26. [26]

      Cui, J., Zhu, J.T., Ma, Z.W. and Jiang, W., Chem. Phys., 2006, 321: 1

    27. [27]

      Ma, Z.X., Huang, J.H. and Luo, M.B., Soft Matter, 2015, 11: 4932

    28. [28]

      Hoogerbrugge, P.J. and Koelman, J.M.V.A., Europhys. Lett., 1992, 19: 155

    29. [29]

      Groot, R.D. and Warren, P.B., J. Chem. Phys., 1997, 107: 4423

    30. [30]

      Kremer, K. and Grest, G.S., J. Chem. Phys.1990, 92: 5057

    31. [31]

      AlSunaidi, A., den Otter, W.K. and Clarke, J.H.R., Phil. Trans. R. Soc. London. A, 2004, 362: 1773

    32. [32]

      Petrus, P., Lisal, M. and Brennan, J.K., Langmuir, 2010, 26: 14680

    33. [33]

      Sevink, G.J.A. and Zvelindovsky, A.V., Macromolecules, 2009, 42: 8500

    34. [34]

      Yu, B., Li, B.H., Jin, Q.H., Ding, D.T. and Shi, A.C., Soft Matter, 2011, 7: 10227

    35. [35]

      Horvat, A., Knoll, A., Krausch, G. and Tsarkova, L., Macromolecules, 2007, 40: 6930

    36. [36]

      Huinink, H.P., van Dijk, H.P.M.A., Brokken-Zijp, J.C.M. and Sevink, G.J.A., Macromolecules, 2001, 34: 5325

    37. [37]

      Wang, Q., Nealey, P.F. and de Pablo, J.J., Macromolecules, 2001, 34: 3458

    38. [38]

      Tu, Y.F., Wan, X.H., Zhang, H., L., Fan, X.H., Lü, D.N., Chen, X.F. and Zhou, Q.F., Chinese J. Polym. Sci., 2003, 21(5): 569

    39. [39]

      Chou, S.H., Tsao, H.K. and Sheng, Y.J., J. Chem. Phys., 2011, 134: 034904

    40. [40]

      Horsch, M.A., Zhang, Z. and Glotzer, S.C., Nano Lett., 2006, 6: 2406

    41. [41]

      Horsch, M.A., Zhang, Z. and Glotzer, S.C., Soft Matter, 2010, 6: 945

  • 加载中
    1. [1]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    2. [2]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    3. [3]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    4. [4]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    5. [5]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    6. [6]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    7. [7]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    8. [8]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    9. [9]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    10. [10]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    11. [11]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    12. [12]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    13. [13]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    14. [14]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    15. [15]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    16. [16]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    17. [17]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    18. [18]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    19. [19]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    20. [20]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

Metrics
  • PDF Downloads(0)
  • Abstract views(776)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return