Citation: Shu-ying Gu, Xie-feng Gao, Sheng-peng Jin, Liu Yan-liang. Biodegradable Shape Memory Polyurethanes with Controllable Trigger Temperature[J]. Chinese Journal of Polymer Science, ;2016, 34(6): 720-729. doi: 10.1007/s10118-016-1795-3 shu

Biodegradable Shape Memory Polyurethanes with Controllable Trigger Temperature

  • Corresponding author: Shu-ying Gu, gushuying@mail.tongji.edu.cn
  • Received Date: 3 December 2015
    Revised Date: 19 December 2015
    Accepted Date: 22 December 2015

    Fund Project: the National Key Technology R&D Program  No. 2012BAI17B05

  • A series of random copolymers (PCLAs) were synthesized by ring-opening polymerization of D,L-lactide (LA) and ε-caprolactone (CL) with different molar ratios. PCLA based polyurethanes (PCLAUs) were obtained by chain-extending of PCLA and polytetramethylene ether (PTMEG) with hexamethylene diisocyanate (HDI). All the PCLAUs exhibit good shape memory properties with high shape fixity ratios above 98% and shape recovery ratios above 82% in the first cycle and 91% in the second cycle. PCLAUs with less CL content show faster recovery speed and PCLAUs with more CL content show higher shape recovery ratio. The trigger temperature can be tuned or controlled around body temperature by adjusting the molar ratio of LA to CL. The PCLAUs have potential applications in implant biomedical devices, especially for minimally invasive deployable devices.
  • 加载中
    1. [1]

      Yan, B., Gu, S. and Zhang, Y., Eur. Polym. J., 2013, 49:366

    2. [2]

      Bai, Y., Zhang, X., Wang, Q. and Wang, T., J. Mater. Chem., A, 2014, 2: 4771

    3. [3]

      Chung, Y.C., Kim, H.Y., Choi, J.W. and Chun, B.C., Macromol. Res., 2014, 22: 1115

    4. [4]

      Chung, Y.C., Park, J.S., Shin, C.H., Choi, J.W. and Chun, B.C., Macromol. Res., 2012, 20: 66

    5. [5]

      Liu, X., Li, H., Zeng, Q., Zhang, Y., Kang, H., Duan, H., Guo, Y. and Liu, H., J. Mater. Chem., A, 2015, 3: 11641

    6. [6]

      Razzaq, M.Y., Behl, M., Kratz, K. and Lendlein, A., Adv. Mater., 2013, 25: 5730

    7. [7]

      Yu, L., Wang, Q., Sun, J., Li, C., Zou, C., He, Z., Wang, Z., Zhou, L., Zhang, L. and Yang, H., J. Mater. Chem. A, 2015,3:13953

    8. [8]

      Lendlein, A., Jiang, H., Jünger, O. and Langer, R., Nature, 2005, 434: 79

    9. [9]

      Coativy, G., Gautier, N., Pontoire, B., Buleon, A., Lourdin, D. and Leroy, E., Carbohydr. Polym., 2015, 116: 307

    10. [10]

      Liu, Y., Li, Y., Chen, H., Yang, G., Zheng, X. and Zhou, S., Carbohydr. Polym., 2014, 104: 101

    11. [11]

      Barikani, M., Zia, K. M., Bhatti, I. A., Zuber, M. and Bhatti, H.N., Carbohydr. Polym., 2008, 74: 621

    12. [12]

      Sattar, R., Kansar, A. and Siddiq, M., Chinese J. Polym. Sci., 2015, 33(9): 1313

    13. [13]

      Kang, H., Li, M., Tang, Z., Xue, J., Hu, X., Zhang, L. and Guo, B., J. Mater. Chem., B, 2014, 2: 7877

    14. [14]

      Yu, K., Liu, Y. and Leng, J., RSC Advances, 2014, 4: 2961

    15. [15]

      Bai, S., Zou, H., Dietsch, H.Y., Simon, C. and Weder, C., Macromol. Chem. Phys., 2014, 215: 398

    16. [16]

      Xie, F., Huang, L., Liu, Y. and Leng, J., Polymer, 2014, 55: 5873

    17. [17]

      Kang, T.H., Lee, J.M., Yu, W.R., Youk, J.H. and Ryu, H.W., Smart Mater. Struct., 2012, 21: 035028

    18. [18]

      Xie, T., Polymer, 2011, 52: 4985

    19. [19]

      Du, K. and Gan, Z., J. Mater. Chem., B, 2014, 2: 3340

    20. [20]

      Wong, Y., Kong, J., Widjaja, L.K. and Venkatraman, S.S., Sci. Chin. Chem., 2014, 57: 476

    21. [21]

      Shao, J., Liu, Y.L., Xiang, S., Bian, X.C., Sun, J.R., Li, G., Chen, X.S. and Hou, H.Q., Chinese J. Polym. Sci., 2015, 33(12): 1713

    22. [22]

      Södergård, A. and Stolt, M., Prog. Polym. Sci., 2002, 27: 1123

    23. [23]

      Zhang, Y., Liu, S., Wang, X., Zhang, Z.Y., Jing, X.B., Zhang, Z.Y., Jing, X.B., Zhang, P. and Xie, Z.G., Chinese J. Polym. Sci., 2014, 32(8): 1111

    24. [24]

      Niu, X.F., Tian, F., Wang, L.Z., Li, X.M., Zhou, G. and Fan, Y.B., Chinese J. Polym. Sci., 2014, 32(1): 43

    25. [25]

      Xu, J. and Song, J., PNAS, 2010, 107: 7652

    26. [26]

      Lu, X.L., Cai, W., Gao, Z. and Tang, W.J., Polym. Bull., 2007, 58: 381

    27. [27]

      Xue, L., Dai, S. and Li, Z., Macromolecules, 2009, 42: 964

    28. [28]

      Li, G., Li, D., Niu, Y., He, T., Chen, K.C. and Xu, K., J. Biomed. Mater. Res., A, 2014, 102: 685

    29. [29]

      Zia, K.M., Zuber, M., Mahboob, S., Sultana, T. and Sultana, S., Carbohydr. Polym., 2010, 80: 229

    30. [30]

      Chung, Y.C., Jung, I.H., Choi, J.W. and Chun, B.C., Polym. Bull., 2014, 71: 1153

    31. [31]

      Chung, Y.C., Kim, H.Y., Yu, J.H. and Chun, B.C., Macromol. Res., 2015, 23: 350

    32. [32]

      Mohammadi, A., Barikani, M. and Barmar, M., Polym. Adv. Technol., 2013, 24: 978

    33. [33]

      Zhao, Q., Qi, H.J. and Xie, T., Prog. Polym. Sci., 2015, 49-50: 79

    34. [34]

      Cha, K.J., Lih, E., Choi, J., Joung, Y.K., Ahn, D.J. and Han, D.K., Macromol. Biosci., 2014, 14: 667

    35. [35]

      Boire, T.C., Gupta, M.K., Zachman, A.L., Lee, S.H., Balikov, D.A., Kim, K., Bellan, L.M. and Sung, H.J., Acta Biomater., 2015, 24: 53

    36. [36]

      Rychter, P., Pamula, E., Orchel, A., Posadowska, U., Krok-Borkowicz, M., Kaps, A., Smigiel-Gac, N., Smola, A., Kasperczyk, J., Prochwicz, W. and Dobrzynski, P., J. Biomed. Mater. Res., A, 2015, 103: 3503

    37. [37]

      Saatchi, M., Behl, M., Nochel, U. and Lenldlein, A., Macromol. Rapid Commun., 2015, 36: 880

    38. [38]

      Wen, Z., Zhang, T., Hui, Y., Wang, W., Yang, K., Zhou, Q. and Wang, Y., J. Mater. Chem., A, 2015, 3: 13435

    39. [39]

      Montaz, M., Razavi-Nouri, M. and Barikani, M., J. Mater. Sci., 2014, 49: 7575

    40. [40]

      Cao, Y.P., Guan, Y., Du, J., Peng, Y.X., Yi, P.C.W. and Chan, A.S.C., Chinese J. Polym. Sci., 2003, 21(1): 29

    41. [41]

      Liu, Y.P., Gall, K., Dunn, M.L. and McCluskey, P., Mech. Mater., 2004, 36: 929

    42. [42]

      Gunes, I.S. and Jana, S.C., J. Nanosci. Nanotechnol., 2008, 8: 1616

  • 加载中
    1. [1]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    2. [2]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    3. [3]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    4. [4]

      Dian-Xue Ma Yu-Wu Zhong . Achieving highly-efficient room-temperature phosphorescence with a nylon matrix. Chinese Journal of Structural Chemistry, 2024, 43(9): 100391-100391. doi: 10.1016/j.cjsc.2024.100391

    5. [5]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    6. [6]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    7. [7]

      Linjing LiWenlai XuJianyong NingYaping ZhongChuyue ZhangJiane ZuoZhicheng Pan . Revealing the intrinsic mechanisms for accelerating nitrogen removal efficiency in the Anammox reactor by adding Fe(II) at low temperature. Chinese Chemical Letters, 2024, 35(8): 109243-. doi: 10.1016/j.cclet.2023.109243

    8. [8]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    9. [9]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2024.100212

    10. [10]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    11. [11]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2023.100335

    12. [12]

      Huan Hu Ying Zhang Shi-Shuang Huang Zhi-Gang Li Yungui Liu Rui Feng Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395

    13. [13]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    14. [14]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    15. [15]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    16. [16]

      Rongliang DengYihang ChenXiaotong FanGuolong ChenShuli WangChangzhi YuXiao YangTingzhu WuZhong ChenYue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346

    17. [17]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    18. [18]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

Metrics
  • PDF Downloads(0)
  • Abstract views(560)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return