Citation: Hong Yao, Jia-li Niu, Jie Zhang, Nan-ying Ning, Xiao-qiu Yang, Ming Tian, Xiao-li Sun, Li-qun Zhang, Shou-ke Yan. Morphologies and Mechanical Properties of Cis-1,4-butadiene Rubber/Polyethylene Blends[J]. Chinese Journal of Polymer Science, ;2016, 34(7): 820-829. doi: 10.1007/s10118-016-1794-4 shu

Morphologies and Mechanical Properties of Cis-1,4-butadiene Rubber/Polyethylene Blends

  • Corresponding author: Ming Tian, tianm@mail.buct.edu.cn Shou-ke Yan, skyan@mail.buct.edu.cn
  • Received Date: 2 January 2016
    Revised Date: 16 February 2016
    Accepted Date: 16 February 2016

    Fund Project: the National Natural Science Foundation of China 51221002the National Natural Science Foundation of China 21174014

  • The mechanical properties and phase morphologies of cis-1,4-butadiene rubber (BR) blended with polyethylene (PE) at different blend ratios were studied. The tensile test results show that the PE exhibits excellent reinforcing capabilities towards BR. Blending BR with PE results in a remarkable enhancement of tensile strength, modulus and the elongation at break simultaneously. An increment of tensile strength from 1.11 MPa to 16.26 MPa was achieved by incorporation of 40 wt% PE in the blends. The modulus and elongation at break of 40/60 PE/BR blends are also about 5 times higher than those of the pure BR treated under exactly the same conditions. The tear test indicates that the tear strength also increases with the increase of PE content. It reaches 58.38 MPa for the 40/60 PE/BR blend, which is approximately 10 times higher than that of the pure BR. Morphological study demonstrates that the PE forms elongated microdomains finely dispersed in the BR matrix when its content is over 30 wt%, which corresponds to the remarkably enhanced mechanical properties. According to the results, reinforcement mechanism of PE toward BR dependent on the microstructure has been discussed and two different mechanisms have been proposed.
  • 加载中
    1. [1]

      Ghosh, P., Chattopadhyay, B. and Sen, A.K., Polymer, 1994, 35(18): 3958

    2. [2]

      Li, Y.J., Oono, Y., Kadowaki, Y.J., Inoue, T., Nakayama, K. and Shimizu, H., Macromolecules, 2006, 39: 4195

    3. [3]

      Antunes, C.F., Machado, A.V. and van Duin, M., Eur. Polym. J., 2011, 47: 1447

    4. [4]

      George, S., Ramamurthy, K., Anand, J.S., Groeninckx, G., Varughese, K.T. and Thomas, S., Polymer, 1999, 40: 4325

    5. [5]

      George, J., Varughese, K.T. and Thomas, S., Polymer, 2000, 41: 1507

    6. [6]

      Muraki, T. and Tajima, M., 1989, Eur. Pat., 324554 A1

    7. [7]

      Mukai, U., 2000, U.S. Pat., 6028143A

    8. [8]

      Buonerba, A., Cuomo, C., Speranza, V. and Grassi, A., Macromolecules, 2010, 43: 367

    9. [9]

      Kumar, S., Rath, T., Mahaling, R.N., Das, C.K., Srivastava, R.B. and Yadaw, S.B., Polym. Compos., 2009, 30(5): 655

    10. [10]

      Maiti, M., Jasra, R.V., Kusum, S.K. and Chaki, T.K., Ind. Eng. Chem. Res., 2012, 51(32): 10607

    11. [11]

      Zou, Z., Sun, Z. and An, L., Chinese J. Polym. Sci., 2014, 32(3): 255

    12. [12]

      Guo, K., Xiang, S., Sun, J. and Meng, C., Chinese J. Polym. Sci., 2014, 32(3): 315

    13. [13]

      Kar, S. and Greenfield, M.L., Polymer, 2015, 62: 129

    14. [14]

      Liu, W., Dong, X., Zou, F.S., Yang, J., Wang, D.J. and Han, C.C., Polymer, 2014, 55: 2744

    15. [15]

      Rath, S.K., Aswal, V.K., Sharma, C., Joshi, K., Patri, M., Harikrishnan, G. and Khakhar, D.V., Polymer, 2014, 55: 5198

    16. [16]

      Zhang, Y., Mark, J.E., Zhu, Y.W., Ruoff, R.S. and Schaefer, D.W., Polymer, 2014, 55: 5389

    17. [17]

      Yao, H., Liu, J., Zhang, L. and Yan, S., Chinese J. Polym. Sci., 2015, 33(3): 386

    18. [18]

      Gent, A.N. and Zhang, L.Q., J. Polym. Sci., Part B: Polym. Phys., 2001, 39: 811

    19. [19]

      Liu, J., Wu, S., Zhang, L., Wang, W. and Cao, D., Phys. Chem. Chem. Phys., 2011, 13: 518

    20. [20]

      Wang, Z., Liu, J., Wu, S., Wang, W. and Zhang, L., Phys. Chem. Chem. Phys., 2010, 12: 3014

    21. [21]

      Minke, R. and Blackwell, J.J., Macromol. Sci., Phys.,1980, B18: 233

    22. [22]

      Kausch, H.H., “Polymer fracture”, Springer-Verlag: Berlin, Heidelberg, New York, 1978

  • 加载中
    1. [1]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    2. [2]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    3. [3]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    4. [4]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    5. [5]

      Xin LuHaoran SunXiaomeng LiChunrui LiJinfeng WangDandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936

    6. [6]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    7. [7]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    8. [8]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    9. [9]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    10. [10]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    11. [11]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    12. [12]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    13. [13]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    14. [14]

      Zhiwei ChenHeyun ShengXue LiMenghan ChenXin LiQiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937

    15. [15]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    16. [16]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

Metrics
  • PDF Downloads(0)
  • Abstract views(764)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return