Citation: Si-hua Guo, Fang-yuan Zheng, Fang Zeng, Shui-zhu Wu. Temperature-responsive Behavior of Polymer Fluorescent System via Electrostatic Interaction Mediated Aggregation/Deaggregation[J]. Chinese Journal of Polymer Science, ;2016, 34(7): 830-837. doi: 10.1007/s10118-016-1793-5 shu

Temperature-responsive Behavior of Polymer Fluorescent System via Electrostatic Interaction Mediated Aggregation/Deaggregation

  • Corresponding author: Shui-zhu Wu, shzhwu@scut.edu.cn
  • Received Date: 4 January 2016
    Revised Date: 1 February 2016
    Accepted Date: 1 February 2016

    Fund Project: was financially supported by the Science and Technology Planning Project of Guangdong Province 2014A010105009National Key Basic Research Program of China 2013CB834702National Natural Science Foundation of China 21474031National Natural Science Foundation of China 21574044Fundamental Research Funds for the Central Universities 2015ZY013

  • A simple and effective polymer fluorescent thermosensitive system was successfully developed based on the synergistic effect of excimer/monomer interconversion of pyrene derivatives and electrostatic interaction between polyelectrolyte and charged fluorophore. As for the system, the excimer-monomer conversion, thermosensitive behavior and thermo-responsive reversibility were investigated experimentally. Temperature variation and temperature-distribution induced fluorescence changes can be observed directly by naked eyes. Thus, this polymer system holds promise for serving as a fluorescent thermometer.
  • 加载中
    1. [1]

      Yang, Z.G., Cao, J.F., He, Y.X., Yang, J.H., Kim, T., Peng, X.J. and Kim, J.S., Chem. Soc. Rev., 2014, 43: 4563

    2. [2]

      Wang, Z.Y., Ma, X.Q., Zong, S.F., Wang, Y.Z., Chen, H. and Cui, Y.P., Talanta, 2015, 131: 259

    3. [3]

      Pais, V.F., Lassaletta, J.M., Fernandez, R., El-Sheshtawy, H.S., Ros, A. and Pischel, U., Chem. Eur. J., 2014, 20: 7638

    4. [4]

      Feng, J., Xiong, L., Wang, S.Q., Li, S.Y., Li, Y. and Yang, G.Q., Adv. Funct. Mater., 2013, 23: 340

    5. [5]

      Ozawa, A., Shimizu, A., Nishiyabu, R. and Kubo, Y., Chem. Commun., 2015, 51: 118

    6. [6]

      Baker, G.A., Baker, S.N. and McCleskey, T.M., Chem. Commun., 2003, 23: 2932

    7. [7]

      Hang, Y.D., He, X.P., Yang, L. and Hua, J.L., Biosens. Bioelectron., 2015, 65: 420

    8. [8]

      Ji, X.F., Wang, P., Wang, H. and Huang, F.H., Chinese J. Polym. Sci., 2015, 33(6): 890

    9. [9]

      Zhang, X.Q., Zhang, X.Y., Yang, B. and Wei, Y., Chinese J. Polym. Sci., 2014, 32(11): 1479

    10. [10]

      Huang, Y.F., Ou, D.X., Wang, C., Huang, C., Li, Q.Q. and Li, Z., Polym. Chem., 2014, 5: 2041

    11. [11]

      Qiu, T., Chen, Y., Song, J. and Fan, L.J., ACS Appl. Mater. Interfaces, 2015, 7: 8260

    12. [12]

      Xu, X.Q., Miao, K.S., Chen, Y. and Fan, L.J., ACS Appl. Mater. Interfaces, 2015, 7: 7759

    13. [13]

      Gao, Y.T., Feng, G.X., Jiang, T., Goh, C.C., Ng, L.G., Liu, B., Li, B., Yang, L., Hua, J.L., and Tian, H., Adv. Funct. Mater., 2015, 25: 2857

    14. [14]

      Huang, J., Sun, N., Yang, J., Tang, R.L., Li, Q.Q., Ma, D.G. and Li, Z., Adv. Funct. Mater. 2014, 24, 7645

    15. [15]

      Lee, J. and Kotov, N.A., Nano Today, 2007, 2(1): 48

    16. [16]

      Li, J., Jiang, Y.B., Cheng, J., Zhang, Y.L., Su, H.M., Lam, J.W.Y., Sung, H.H.Y., Wong, K.S., Kwok, H.S. and Tang, B.Z., Phys. Chem. Chem. Phys., 2015: 17, 1134

    17. [17]

      Ebrahimi, S., Akhlaghi, Y., Kompany-Zareh, M. and Rinnan, A., ACS Nano, 2014, 8(10): 10372

    18. [18]

      Wang, X.D., Meier, R.J., Schmittlein, C., Schreml, S., Schaferling, M. and Wolfbeis, O.S., Sensor. Actuat. B-Chem., 2015, 221: 37

    19. [19]

      Liu, G.F., Zhou, W., Zhang, J.Q. and Zhao, P., J. Polym. Sci., Part A: Polym. Chem., 2012, 50: 2219

    20. [20]

      Liu, Y., Ma, C., Zeng, F. and Wu, S.Z., Acta Polymerica Sinica (in Chinese), 2012, (6): 666

    21. [21]

      Uchiyama, S., Matsumura, Y., de Silva, A.P. and Iwai, K., Anal. Chem., 2004, 76: 1793

    22. [22]

      Tsuji, T., Yoshida, S., Yoshida, A. and Uchiyama, S., Anal. Chem., 2013, 85: 9815

    23. [23]

      Jiang, Y.N., Yang, X.D., Ma, C., Wang, C.X., Chen, Y., Dong, F.X., Yang, B., Yu, K. and Lin, Q., ACS Appl. Mater. Interfaces, 2014, 6: 4650

    24. [24]

      Wang, X., Guo, X.H., Zhu, Y., Li, L., Wu, S. and Zhang, R., Chinese J. Polym. Sci., 2011, 29(4): 490

    25. [25]

      Qiao, J., Chen, C.F., Qi, L., Liu, M.R., Dong, P., Jiang, Q., Yang, X.Z., Mu, X.Y. and Mao, L.Q., J. Mater. Chem. B, 2014, 2: 7544

    26. [26]

      Lee, S., Lee, J.S., Lee, C.H., Jung, Y.S. and Kim, J.M., Langmuir, 2011, 27(5): 1560

    27. [27]

      Feng, J., Tian, K.J., Hu, D.H., Wang, S.Q., Li, S.Y., Zeng, Y., Li, Y. and Yang, G.Q., Angew. Chem. Int. Ed., 2011, 50: 8072

    28. [28]

      Wang, H., Wu, Y.Q., Shi, Y.L., Tao, P., Fan, X., Su, X.Y. and Kuang, G.C., Chem. Eur. J., 2015, 21: 3219

    29. [29]

      Liu, X., Li, S.Y., Feng, J., Li, Y. and Yang, G.Q., Chem. Commun., 2014, 50: 2778

    30. [30]

      Cao, C., Liu, X.G., Qiao, Q.L., Zhao, M., Yin, W.T., Mao, D.Q., Zhang, H. and Xu, Z.C., Chem. Commun., 2014, 50: 15811

    31. [31]

      Liu, L.X., Li, W., Yan, J.T. and Zhang, A.F., J. Polym. Sci., Part A: Polym. Chem., 2014, 52: 1706

    32. [32]

      Chen, Y.P. and Li, X.D., Biomacromolecules, 2011, 12: 4367

    33. [33]

      Wang, C.Y., Tong, Z., Zeng, F., Ren, B.Y. and Liu, X.X., Acta Polymerica Sinica (in Chinese), 2002, (6): 729

    34. [34]

      Wang, C.Y., Sun, Q.L., Tong, Z., Liu, X.X., Zeng, F. and Gao, F., Acta Polymerica Sinica (in Chinese), 2011, (7): 1265

    35. [35]

      Hong, S.W., Kim, D.Y., Lee, J.U. and Jo, W.H., Macromolecules, 2009, 42(7): 2009

    36. [36]

      Zhang, Q.E., Deng, T., Li, J.S., Xu, W.J., Shen, G.L. and Yu, R.Q., Biosens. Bioelectron., 2015, 68: 253

    37. [37]

      Bibi, I. and Siddiq, M., Chinese J. Polym. Sci., 2011, 29(5): 575

    38. [38]

      Qiao, J.J., Zhang, X.H. and Wu, S.K., Acta Polymerica Sinica (in Chinese), 2006, (1): 76

    39. [39]

      Zhegalova, N.G., Dergunov, S.A., Wang, S.T., Pinkhassik, E. and Berezin, M.Y., Chem. Eur. J., 2014, 20: 10292

    40. [40]

      Takei, Y., Arai, S., Murata, A., Takabayashi, M., Oyama, K., Ishiwata, S., Takeoka, S. and Suzuki, M., ACS Nano, 2014, 8(1): 198

    41. [41]

      Wu, Y.X., Zhang, X.B., Li, J.B., Zhang, C.C., Liang, H., Mao, G.J., Zhou, L.Y., Tan, W.H., Yu, R.Q., Anal. Chem., 2014, 86: 10389

    42. [42]

      Wang, F., Nandhakumar, R., Moon, J.H., Kim, K.M., Lee, J.Y. and Yoon, J., Inorg. Chem., 2011, 50: 2240

    43. [43]

      Chen, H., Lin, W.Y., Jiang, W.Q., Dong, B.L., Cui, H.J. and Tang, Y.H., Chem. Commun., 2015, 51: 6968

    44. [44]

      Williams, A.T.R., Winfield, S.A. and Miller, J.N., Analyst, 1983, 108: 1067

    45. [45]

      Demas, J.N. and Crosby, G.A., J. Phys. Chem., 1971, 75 (8): 991

    46. [46]

      Broadbent, A.D., Color Res. Appl., 2004, 29(4): 26

  • 加载中
    1. [1]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    2. [2]

      Xin LuHaoran SunXiaomeng LiChunrui LiJinfeng WangDandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936

    3. [3]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    4. [4]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    5. [5]

      Huan Hu Ying Zhang Shi-Shuang Huang Zhi-Gang Li Yungui Liu Rui Feng Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395

    6. [6]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    7. [7]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    8. [8]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    9. [9]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    10. [10]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    11. [11]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    12. [12]

      Yong-Dan ZhaoYidan WangRongrong WangLina ChenHengtong ZuoXi WangJihong QiangGeng WangQingxia LiCanqi PingShuqiu ZhangHao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929

    13. [13]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    14. [14]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    15. [15]

      Dian-Xue Ma Yu-Wu Zhong . Achieving highly-efficient room-temperature phosphorescence with a nylon matrix. Chinese Journal of Structural Chemistry, 2024, 43(9): 100391-100391. doi: 10.1016/j.cjsc.2024.100391

    16. [16]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    17. [17]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    18. [18]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    19. [19]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    20. [20]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

Metrics
  • PDF Downloads(0)
  • Abstract views(642)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return