Citation: Shi Mei, Duan Xin-rui, Liu Zhao-tie, Liu Zhong-wen, Jiang Jin-qiang. Diethanol Ammonium-borate Based Polybetaine with Tunable UCST Phase Transition[J]. Chinese Journal of Polymer Science, ;2016, 34(6): 777-784. doi: 10.1007/s10118-016-1790-8 shu

Diethanol Ammonium-borate Based Polybetaine with Tunable UCST Phase Transition

  • Corresponding author: Jiang Jin-qiang, jiangjq@snnu.edu.cn
  • Received Date: 27 December 2015
    Revised Date: 26 January 2016

    Fund Project: the Natural Science Basic Research Plan in Shaanxi Province of China NSBRP-SPC 2014JM2051the Program for Changjiang Scholars and Innovative Research Team in Universities IRT 14R33the National Natural Science Foundation of China No. 21374056the Program of Introducing Talents of Discipline to Universities B14041Shaanxi Innovative Research Team for Key Science and Technology 2012KCT-21, 2013KCT-17

  • A betaine-type styrene monomer with the quaternary ammonium-borate anion inner-salt pair was synthesized through the quaternization reaction and polymerized to afford the target polybetaine of poly(4-vinylbenzyl methyl-diethanol ammonium borate) (PVMAB). The chemical structures of the monomer and polymer were well demonstrated with 1H-NMR and 11B-NMR spectra analysis. The thermal-sensitive experiment showed that PVMAB in water afforded gradually well-defined sigmoidal transmittance-temperature (T-t) curves along with the increasing polymer concentration. However, the phase transition temperatures at the bottom of the S-shaped curves were always below 10 ℃ due to the very weak zwitterionic association of the ammonium-borate inner-salt pairs. The UCST phase transition could also be tuned by changing the ethanol content in the ethanol/water mixture. And the cytotoxicity experiment demonstrated the good biomimetic property of PVMAB. This study enriches the toolbox of polybetaines by introducing the quaternary ammonium-borate anion zwitterionic pair in the repeat units, therefore broadens the scope of synthetic polybetaines.
  • 加载中
    1. [1]

      Duncan, A.J., Leo, D.J. and Long, T.E., Macromolecules, 2008, 41(21): 7765

    2. [2]

      Ramos, J., Forcada, J. and Hidalgo-Alvarez, R., Chem. Rev., 2014, 114(1): 367

    3. [3]

      Schlenoff, J.B., Langmuir, 2014, 30(32): 9625

    4. [4]

      Lowe, A.B. and McCormick, C.L., Chem. Rev., 2002, 102(11): 4177

    5. [5]

      Willcock, H., Lu, A., Hansell, C.F., Chapman, E., Collins, I.R. and O'Reilly, R.K., Polym. Chem., 2014, 5: 1023

    6. [6]

      Azzaroni, O., Brown, A.A. and Huck, W.T.S., Angew. Chem., 2006, 118(11): 1802

    7. [7]

      Li, W.S., Huang, L.W., Ying, X.Y., Jian, Y., Hong, Y., Hu, F.Q. and Du, Y.Z., Angew. Chem., 2015, 127(10): 3169

    8. [8]

      Izumrudov, V.A., Domashenko, N.I., Zhiryakova, M.V. and Davydova, O.V., J. Phys. Chem. B, 2005, 109(37): 17391

    9. [9]

      Bohrisch, J., Schimmel, T., Engelhardt, H. and Jaeger, W., Macromolecules, 2002, 35(10): 4143

    10. [10]

      Azevedo, M.C.C. and Cavaleiro, A.M.V., J. Chem. Educ., 2012, 89(6): 767

    11. [11]

      Cruz, G., J. Chem. Educ., 2013, 90(12): 1645

    12. [12]

      Pelton, R., Hu, Z., Ketelson, H. and Meadows, D., Langmuir, 2009, 25(1): 192

    13. [13]

      Shim, J., Kim, D.G., Kim, H.J., Lee, J.H. and Lee, J.C., ACS Appl. Mater. Inter., 2015, 7(14): 7690

    14. [14]

      Steinberg, H. and Hunter, D.L., Ind. Eng. Chem., 1957, 49(2): 174

    15. [15]

      Shen, G.Q., Zheng, Z., Wan, Y., Xu, X.D., Cao, L.L., Yue, Q.X., Sun, T.J. and Liu, A.R., Wear, 2000, 246: 55

    16. [16]

      Tanner, D.W. and Bruice, T.C., J. Am. Chem. Soc., 1967, 89(26): 6954

    17. [17]

      Nizioł, J., Zieliński, Z., Leś, A., Dąbrowska, M., Rode, W. and Ruman, T., Bioorgan. Med. Chem., 2014, 22(15): 3906

    18. [18]

      Kim, D.J., Mun, S.D., Yoon, S., Oh, C.H., Park, H.R., You, T.S., Lee, J. and Kim, Y., Polyhedron, 2011, 30(6): 1076

    19. [19]

      Qi, T., Sonoda, A., Makita, Y., Kanoh, H., Ooi, K. and Hirotsu, T., Ind. Eng. Chem. Res., 2002, 41(2): 133

    20. [20]

      Liang, Z.Y., Ma, L.J., Lu, C.X. and Zhai, Y.J., J. Surfactants Deterg., 2012, 15(2): 217

    21. [21]

      Miyazaki, Y., Yoshimura, K., Miura, Y., Sakashita, H. and Ishimaru, K., Polyhedron, 2003, 22(6): 909

    22. [22]

      Taler, G., Schejter, A. and Navon, G., Inorg. Chim. Acta, 1998, 273: 388

    23. [23]

      Miyazaki, Y., Fujimori, T., Okita, H., Hirano, T. and Yoshimura, K., Dalton Trans., 2013, 42(29): 10473

    24. [24]

      Zhang, Q.L. and Hoogenboom, R., Prog. Polym. Sci., 2015, 48: 122

    25. [25]

      Noskov, S.Y., Lamoureux, G. and Roux, B., J. Phys. Chem. B, 2005, 109(14): 6705

    26. [26]

      Bustamante, P., Navarro, J., Romero, S. and Escalera, B., J. Pharm. Sci., 2002, 91(3): 874

    27. [27]

      Hoogenboom, R., Rogers, S., Can, A., Becer, C.R., Guerrero-Sanchez, C., Wouters, D., Hoeppener, S. and Schubert, U.S., Chem. Commun., 2009, 37: 5582

    28. [28]

      Twaites, B.R., Alarcón, C.H., Lavigne, M., Saulnier, A., Pennadam, S.S., Cunliffe, D., Górecki, D.C. and Alexander, C., J. Control. Release, 2005, 108: 472

    29. [29]

      Tian, M., Cheng, R.D., Zhang, J., Liu, Z.T., Liu, Z.W. and Jiang, J.Q., Langmuir, 2016, 32(1): 12

    30. [30]

      Geng, C.Z., Hu, X., Yang, G.H., Zhang, Q., Chen, F. and Fu, Q., Chinese J. Polym. Sci., 2015, 33(1): 61

    31. [31]

      Hu, Y., Gan, L., Li, Q.X., Tao, H., Ye, L., Zhang, A.Y. and Feng, Z.G., Chinese J. Polym. Sci., 2014, 32(12): 1714

  • 加载中
    1. [1]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    2. [2]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    3. [3]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    4. [4]

      Lan YangYu LiMou JiangRui ZhouHengjiang CongMinghui YangLei ZhangShenhui LiYunhuang YangMaili LiuXin ZhouZhong-Xing JiangShizhen Chen . Fluorinated [2]rotaxanes as sensitive 19F MRI agents: Threading for higher sensitivity. Chinese Chemical Letters, 2024, 35(10): 109512-. doi: 10.1016/j.cclet.2024.109512

    5. [5]

      Junmei FANWei LIURuitao ZHUChenxi QINXiaoling LEIHaotian WANGJiao WANGHongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120

    6. [6]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    7. [7]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    8. [8]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    9. [9]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    10. [10]

      Rongliang DengYihang ChenXiaotong FanGuolong ChenShuli WangChangzhi YuXiao YangTingzhu WuZhong ChenYue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346

    11. [11]

      Hong Chen Mao-Yin Ran Long-Hua Li Xin-Tao Wu Hua Lin . [Cs14Cl][Tm71Se110]: An unusual salt-inclusion chalcogenide containing different valent Tm centers and ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100397-100397. doi: 10.1016/j.cjsc.2024.100397

Metrics
  • PDF Downloads(0)
  • Abstract views(586)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return