Citation: Ji-jie Wen, Hong-guang Lu, De-e Liu, Hui Gao. Fabrication of Macroporous Protein-containing Films through the Reverse Emulsions Approach Featuring β-Cyclodextrin-conjugated PEG-PLGA Copolymers[J]. Chinese Journal of Polymer Science, ;2016, 34(6): 730-738. doi: 10.1007/s10118-016-1789-1 shu

Fabrication of Macroporous Protein-containing Films through the Reverse Emulsions Approach Featuring β-Cyclodextrin-conjugated PEG-PLGA Copolymers

  • Corresponding author: Hong-guang Lu, hglu@tjut.edu.cn Hui Gao, hgao@tjut.edu.cn;ghhigher@hotmail.com
  • Received Date: 11 December 2015
    Revised Date: 31 January 2016
    Accepted Date: 22 December 2015

    Fund Project: Program for New Century Excellent Talents in Universities No. NCET-11-1063the National Natural Science Foundation of China Nos. 21374079 and 21244004

  • A series of β-cyclodextrin-conjugated 4-arm poly(ethylene glycol)-poly(lactide-co-glycolide) (4-arm PEG-PLGA) copolymers were synthesized by a ring-opening polymerization of D,L-lactide and glycolide using 4-arm PEG as initiator, and then conjugated with mono(6-ethylenediamine-6-deoxy)-β-cyclodextrin (CDen) or ethylenediamino-bridged bis-β-CD (BCDen). The chemical structures of copolymers were confirmed by 1H-NMR and FTIR spectroscopy. The β-CD-conjugated PEG-PLGA formed stable reverse micelles due to the formation of β-CD and bovine serum albumin (BSA) inclusion complexation, which could accommodate BSA in the organic solvent with improved encapsulation efficiency. Moreover, we demonstrated a one-step approach to construct macroporous protein-containing films using these reverse micelles. The films with ordered pore arrays were directly prepared from reverse micelles. Interestingly, the protein was totally located in the whole matrix except for the pores.
  • 加载中
    1. [1]

      Wang, S., Saffar, A., Ajji, A., Wu, H. and Guo, S., Chinese J. Polym. Sci., 2015, 33(7): 1028

    2. [2]

      Wijnhoven, J.E.G.J. and Vos, W.L., Science, 1998, 281: 802

    3. [3]

      Imada, M., Noda, S., Chutinan, A., Tokuda, T., Murata M. and Sasaki, G., Appl. Phys. Lett., 1999, 75: 316

    4. [4]

      Collins, G., Blomker, M., Osiak, M., Holmes, J.D., Bredol, M. and O'Dwyer, C., Chem. Mater., 2013, 25: 4312

    5. [5]

      Davis, M.E., Nature, 2002, 417: 813

    6. [6]

      Akay, G., Brich, M.A. and Bokhari, M.A., Biomaterials, 2004, 25: 3991

    7. [7]

      Bai, H., Du, C., Zhang, A.J. and Li, L., Angew. Chem. Int. Ed., 2013, 52: 1224

    8. [8]

      Li, S., Han, H., Zhu, X., Jiang, X. and Kong, X., Chinese J. Polym. Sci., 2015, 33(8): 1196

    9. [9]

      Wang, S., Shi, X., Gan, Z. and Wang, F., Chinese J. Polym. Sci., 2015, 33(1): 128

    10. [10]

      Tanev, P.T., Chibwe, M. and Pinnavaia, T.J., Nature, 1994, 368: 321

    11. [11]

      Bunz, U.H.F., Adv. Mater., 2006, 18: 973

    12. [12]

      Stenzel, M.H., Barner-Kowollik, C. and Davis, T.P., J. Polym. Sci. A-1, 2006, 44: 2363

    13. [13]

      Escale, P., Save, M., Lapp, A., Rubatat, L. and Billon, L., Soft Matter., 2010, 6: 3202

    14. [14]

      Hernández-Guerrero, M. and Stenzel, M.H., Polym. Chem., 2012, 3: 563

    15. [15]

      Fan, W., Fan, G., Zhang, X. and Yang, Z., Chinese J. Polym. Sci., 2016, 34(1): 88

    16. [16]

      Jiang, X., Gu, J., Shen, Y., Wang, S.G. and Tian, X.Z., J .Appl. Polym. Sci., 2011, 119: 3329

    17. [17]

      Peng, S. and Deng, W.L., New J. Chem., 2014, 38: 1011

    18. [18]

      Zhang, Y. and Wang, C., Adv. Mater., 2007, 19: 913

    19. [19]

      Min, E., Wong, K.H. and Stenzel, M.H., Adv. Mater., 2008, 20: 3550

    20. [20]

      Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S. and Lee, Y., Anal. Biochem., 2005, 339: 69

    21. [21]

      Zeng, J.P., Huang, H.T., Liu, S.Y., Xu, H.B., Huang, J. and Yu, Y.H., Colloids Surf., B., 2013, 105: 120

    22. [22]

      Fujita, K., Tahara, T. and Koga, T., Chem. Lett., 1989, 18: 821

    23. [23]

      Wu, G., Chen, S.C., Zhan, Q. and Wang, Y.Z., Macromolecules, 2011, 44: 999

    24. [24]

      Gao, H., Yang, Y.W., Fan, Y.G. and Ma, J.B., J. Control. Release, 2006, 112: 301

    25. [25]

      Jiang, W.L. and Schwendeman, S.P., Pharm. Res., 2001, 18: 878

    26. [26]

      Bradford, M.M., Anal., Biochem., 1976, 72: 248

    27. [27]

      Zhang, W.X., Wan, L.S., Meng, X.L., Li, J.W., Ke, B.B., Chen, P.C. and Xu, Z.K., Soft Matter, 2011, 7: 4221

    28. [28]

      Chen, Y., Wang, F. and Benson, H.A.E., Pept. Sci., 2008, 90: 644

    29. [29]

      Dong, Y.C. and Feng, S.S., Biomaterials, 2004, 25: 2843

    30. [30]

      Cheng, J.J., Teply, B.A., Sherifi, I., Sung, J., Luther, G., Gu, F.X., Levy-Nissenbaum, E., Radovic-Moreno, A.F., Langer, R. and Farokhzad, O.C., Biomaterials, 2007, 28: 869

    31. [31]

      Gu, W.X., Zhu, M.R., Song, N., Du, X.X., Yang, W.Y. and Gao, H., J. Mater. Chem. B., 2015, 3: 316

    32. [32]

      Kaptay, G., Colloid Surfaces A, 2006, 282: 387

    33. [33]

      Sreenivasan, K., Polym. Int., 1997, 42: 22

    34. [34]

      Gao, H., Wang, Y.N., Fan, Y.G. and Ma, J.B., Bioorg. Med. Chem., 2006, 14: 131

    35. [35]

      Qiu, L.Y., Wang, R.J., Zheng, C., Jin, Y. and Jin, L.Q., Nanomedicine, 2010, 5: 193

    36. [36]

      Guliants, V.V., Carreon, M.A. and Lin, Y.S., J. Membr. Sci., 2004, 235: 53

  • 加载中
    1. [1]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

    2. [2]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    3. [3]

      Wenjia WangXingyue HeXiaojie WangTiantian ZhaoOsamu MuraokaGenzoh TanabeWeijia XieTianjiao ZhouLei XingQingri JinHulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656

    4. [4]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    5. [5]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

    6. [6]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    7. [7]

      Tong ZhangChao SunShubin YangZimin CaiSifeng ZhuWendian LiuYun LuanCheng Wang . Inhalation of taraxasterol loaded mixed micelles for the treatment of idiopathic pulmonary fibrosis. Chinese Chemical Letters, 2024, 35(8): 109248-. doi: 10.1016/j.cclet.2023.109248

    8. [8]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    9. [9]

      Yihan ZhouDuo GaoYaying WangLi LiangQingyu ZhangWenwen HanJie WangChunliu ZhuXinxin ZhangYong Gan . Worm-like micelles facilitate the intestinal mucus diffusion and drug accumulation for enhancing colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108967-. doi: 10.1016/j.cclet.2023.108967

    10. [10]

      Yu QinMingyang HuangChenlu HuangHannah L. PerryLinhua ZhangDunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171

    11. [11]

      Ningxiang Wu Huaping Zhao Yong Lei . Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge. Chinese Journal of Structural Chemistry, 2024, 43(11): 100392-100392. doi: 10.1016/j.cjsc.2024.100392

    12. [12]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    13. [13]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    14. [14]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    15. [15]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    16. [16]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    17. [17]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    18. [18]

      Jiale ZhengMei ChenHuadong YuanJianmin LuoYao WangJianwei NaiXinyong TaoYujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812

    19. [19]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    20. [20]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

Metrics
  • PDF Downloads(0)
  • Abstract views(575)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return