Citation: Cheng He-li, Feng Qing-hua, Liao Chuan-an, Liu Yu, Wu Dong-bei, Wang Qi-gang. Removal of Methylene Blue with Hemicellulose/Clay Hybrid Hydrogels[J]. Chinese Journal of Polymer Science, ;2016, 34(6): 709-719. doi: 10.1007/s10118-016-1788-2 shu

Removal of Methylene Blue with Hemicellulose/Clay Hybrid Hydrogels

  • Corresponding author: Wang Qi-gang, wangqg66@tongji.edu.cn
  • Received Date: 30 November 2015
    Revised Date: 2 February 2016
    Accepted Date: 3 February 2016

    Fund Project: the National Natural Science Foundation of China Nos. 21274111, 51473123 and 51402215the Program for New Century Excellent Talents in University of Ministry of Education of China NECT-11- 0386the Recruitment Program of Global Experts, and the open fund of Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education of China No. 08031341

  • In this study, we chose corn stover hemicellulose for the preparation of hydrogels with admirable adsorption properties under mild alkaline conditions. Clay nanosheets were introduced to this system and hemicellulose/clay hybrid hydrogels were prepared. Morphological, mechanical properties and the methylene blue adsorption behaviors of the prepared hydrogels were studied. Results suggested that the addition of clay not only improved the mechanical strength of hemicellulose-based hydrogels, but also increased the adsorption capacity on methylene blue. Moreover, the adsorptions were confirmed to follow pseudo-second order equation for both gels with and without clay. The maximum adsorption capacities on methylene blue for hemicellulose-based hydrogels with or without clay reached 148.8 and 95.6 mg/g, respectively. These results implied that hemicellulose-based hydrogels could be used as promising adsorbents for the removal of methylene blue from waste water.
  • 加载中
    1. [1]

      Ravikumar, K., Deebika, B. and Balu, K., J. Hazard. Mater., 2005, 122(1-2): 75

    2. [2]

      Xu, D., Hein, S., Loo, L.S. and Wang, K., Ind. Eng. Chem. Res., 2011, 50(10): 6343

    3. [3]

      Dou, X., Li, P., Zhang, D. and Feng, C.L., Soft Matter, 2012, 8: 3231

    4. [4]

      Moghaddama, S.S., Moghaddama, M.R.A. and Aramib, M., J. Hazard. Mater., 2010, 175(1-3): 651

    5. [5]

      Dalaran, M., Emik, S., Güçlü, G., İyim, T.B. and Özgümüş, S., Desalination, 2011, 279(1-3): 170

    6. [6]

      Kim, T.H., Park, C., Yang, J. and Kim, S., J. Hazard. Mater., 2004, 112(1-2): 95

    7. [7]

      Robinson, T., McMullan, G., Marchant, R. and Nigam, P., Bioresour. Technol., 2001, 77: 247

    8. [8]

      Hoffman, A.S., Adv. Drug Deliver. Rev., 2012, 64: 18

    9. [9]

      Seliktar, D., Science, 2012, 336: 1124

    10. [10]

      Miao, Q., Wu, Z., Hai, Z., Tao, C., Yuan, Q., Gong, Y., Guan, Y., Jiang, J. and Liang, G., Nanoscale, 2015, 7: 2797

    11. [11]

      Liu, W., Zhang, B., Lu, W. W., Li X., Zhu, D., Yao, K., Wang, Q., Zhao, C. and Wang, C., Biomaterials, 2004, 25(15): 3005

    12. [12]

      Zheng, Y. and Wang, A.Q., J. Hazard. Mater., 2009, 171(1-3): 671

    13. [13]

      Dragan, E.S. and Apopei, D.F., Chem. Eng. J., 2011, 178: 252

    14. [14]

      Gad, Y.H., Aly, R.O. and Abdel-Aal, S.E., J. Appl. Polym. Sci., 2011, 120(4): 1899

    15. [15]

      Crini, G., Prog. Polym Sci., 2005, 30(1): 38

    16. [16]

      Paulino, A.T., Guilherme, M.R., Reis, A.V., Campese, G.M., Muniz, E.C. and Nozaki, J., J. Colloid Interf. Sci., 2006, 301(1): 55

    17. [17]

      Vakili, M., Rafatullah, M., Salamatinia, B., Abdullah, A.Z., Ibrahim, M.H., Tan, K.B., Gholami, Z. and Amouzgar, P., Carbohydr. Polym., 2014, 113: 115

    18. [18]

      Wang, L. and Li, J., Ind. Crop. Prod., 2013, 42: 153

    19. [19]

      Sharma, R., Kaith, B.S., Kalia, S., Pathania, D., Kumar, A., Sharma, N., Street, R.M. and Schauer, C., J. Environ. Manage., 2015, 162: 37

    20. [20]

      Cao, X., Peng, X., Zhong, L. and Sun, R., J. Agric. Food Chem., 2014, 62(41): 10000

    21. [21]

      Sun, X.F., Gan, Z., Jing, Z., Wang, H., Wang, D. and Jin, Y., J. Appl. Polym. Sci., 2015, 132(10): 41606

    22. [22]

      Sun, X.F., Wang, H., Jing, Z. and Mohanathas, R., Carbohydr. Polym., 2013, 92(2): 1357

    23. [23]

      Zhao, W., Odelius, K., Edlund, U., Zhao, C. and Albertsson, A.C., Biomacromolecules, 2015, 16(8): 2522

    24. [24]

      Kuzmenko, V., Hägg D., Toriz, G. and Gatenholm, P., Carbohydr. Polym., 2014, 102: 862

    25. [25]

      Zhao, W., Glavas, L., Odelius, K., Edlund, U. and Albertsson, A.C., Chem. Mater., 2014, 26(14): 4265

    26. [26]

      Peng, X.W., Zhong, L.X., Ren, J.L. and Sun, R.C., J. Agric. Food Chem., 2012, 60(15): 3909

    27. [27]

      Ferrari, E., Ranucci, E., Edlund, U. and Albertsson, A.C., J. Appl. Polym. Sci., 2015, 132(12): 41695

    28. [28]

      Xiang, Y., Peng, Z. and Chen, D., Eur. Polym. J., 2006, 42: 2125

    29. [29]

      Haraguchi, K., Takehisa, T. and Fan, S., Macromolecules, 2002, 35: 10162

    30. [30]

      Bao, S., Wu, D., Wang, Q. and Su T., PloS one, 2014, 9(2): e88802

    31. [31]

      Gao, G., Du, G., Cheng, Y. and Fu, J., J. Mater. Chem. B., 2014, 2: 1539

    32. [32]

      Wang, X., Li, D., Yang F., Shen, H., Li, Z. and Wu, D., Polym. Chem., 2013, 4: 4596

    33. [33]

      Song, H., Liu, W., He, S., Yang, M., Gao, Y., Zhu, C. and Wu, L., Chinese J. Polym. Sci., 2008, 26(2): 213

    34. [34]

      Öztürk, A. and Malkoc, E., Appl. Surf. Sci., 2014, 299: 105

    35. [35]

      Martínez, Martínez, V., López, Arbeloa, F., Banuelos, Prieto, J. and Arbeloa, López, I., Chem. Mater., 2005, 17: 4134

    36. [36]

      Mina, M.F. and Alam, M.M., Chinese J. Polym. Sci., 2005, 23(2): 269

    37. [37]

      Feng, Q.H., Cheng, H.L., Chen, F.G., Zhou, X.S., Wang, P. and Xie, Y.M., J. Wood Chem. Technol., 2015, 36: 173

    38. [38]

      Crini, G., Bioresour. Technol., 2006, 97: 1061

    39. [39]

      Shen, C., Shen, Y., Wen, Y., Wang, H. and Liu, W., Water Res., 2011, 45(16): 5200

    40. [40]

      Lagergren, S. and Svenska, B.K., Vetenskapsakad Handlingar., 1898, 24: 1

    41. [41]

      Ho, Y.S. and McKay, G., Process Biochem., 1999, 34(5): 451

    42. [42]

      Chatterjee, S., Chatterjee, S., Chatterjee, B.P., Das, A.R. and Guha, A.K., J. Colloid Interf. Sci., 2005, 288(1): 30

    43. [43]

      Liu, F., Chung, S., Oh, G. and Seo, T.S., ACS Appl. Mater Inter., 2012, 4(2): 922

    44. [44]

      Nethaji, S., Sivasamy, A., Thennarasu, G. and Saravanan, S., J. Hazard. Mater., 2010, 181: 271

    45. [45]

      Sun, Q. and Yang, L., Water Res., 2003, 37(7): 1535

    46. [46]

      Hameed, B. and El-Khaiary, M., J. Hazard. Mater., 2008, 153(1-2): 701

    47. [47]

      Ho, Y.S., Carbon, 2004, 42(10): 2115

  • 加载中
    1. [1]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    2. [2]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    3. [3]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    4. [4]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    5. [5]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    6. [6]

      Chong LiuNanthi BolanAnushka Upamali RajapakshaHailong WangParamasivan BalasubramanianPengyan ZhangXuan Cuong NguyenFayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960

    7. [7]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    8. [8]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    9. [9]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    10. [10]

      Dan LuoJinya TianJianqiao ZhouXiaodong Chi . Anthracene-bridged "Texas-sized" box for the simultaneous detection and uptake of tryptophan. Chinese Chemical Letters, 2024, 35(9): 109444-. doi: 10.1016/j.cclet.2023.109444

    11. [11]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    12. [12]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    13. [13]

      Hong-Rui LiXia KangRui GaoMiao-Miao ShiBo BiZe-Yu ChenJun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958

    14. [14]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    15. [15]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    16. [16]

      Haobo WangFei WangYong LiuZhongxiu LiuYingjie MiaoWanhong ZhangGuangxin WangJiangtao JiQiaobao Zhang . Emerging natural clay-based materials for stable and dendrite-free lithium metal anodes: A review. Chinese Chemical Letters, 2025, 36(2): 109589-. doi: 10.1016/j.cclet.2024.109589

    17. [17]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    18. [18]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    19. [19]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    20. [20]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

Metrics
  • PDF Downloads(0)
  • Abstract views(703)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return