Citation: Chakraborty Samarshi, Kumar Manish, Suresh Kelothu, Pugazhenthi G.. Investigation of Structural, Rheological and Thermal Properties of PMMA/ONi-Al LDH Nanocomposites Synthesized via Solvent Blending Method: Effect of LDH Loading[J]. Chinese Journal of Polymer Science, ;2016, 34(6): 739-754. doi: 10.1007/s10118-016-1786-4 shu

Investigation of Structural, Rheological and Thermal Properties of PMMA/ONi-Al LDH Nanocomposites Synthesized via Solvent Blending Method: Effect of LDH Loading

  • Corresponding author: Pugazhenthi G., pugal@iitg.ernet.in
  • Received Date: 16 November 2015
    Revised Date: 19 January 2016
    Accepted Date: 24 January 2016

  • This article addresses the synthesis of organically tailored Ni-Al layered double hydroxide (ONi-Al LDH) and its use in the fabrication of exfoliated poly(methyl methacrylate) (PMMA) nanocomposites. The pristine Ni-Al LDH was initially synthesized by co-precipitation method and subsequently modified using sodium dodecyl sulfate to obtain ONi-Al LDH. Nanocomposites of PMMA containing various amounts of modified Ni-Al LDH (3 wt%-7 wt%) were synthesized via solvent blending method to investigate the influence of LDH content on the properties of PMMA matrix. Several characterization methods such as X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), rheological analysis, differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA), were employed to examine the structural, viscoelastic and thermal properties of PMMA/OLDH nanocomposites. The results of XRD and TEM examination confirm the formation of partially exfoliated PMMA/OLDH nanocomposites. The FTIR results elucidate that the characteristic bands for both pure PMMA and modified LDH are present in the spectra of PMMA/OLDH nanocomposites. Rheological analyses were carried out to examine the adhesion between polymer matrix and fillers present in the nanocomposite sample. The TGA data indicate that the PMMA nanocomposites exhibit higher thermal stability when compared to pure PMMA. The thermal decomposition temperature of PMMA/OLDH nanocomposites increases by 28 K compared to that of pure PMMA at 15% weight loss as a point of reference. In comparison with pure PMMA, the PMMA nanocomposite containing 7 wt% LDH demonstrates improved glass transition temperature (Tg) of around 3 K. The activation energy (Ea), reaction orders (n) and reaction mechanism of thermal degradation of PMMA/OLDH nanocomposites were evaluated using different kinetic models. Water uptake capacity of the PMMA/OLDH nanocomposites is less than that of the pure PMMA.
  • 加载中
    1. [1]

      Alexandre, M, Dubois, P. Mater. Sci. Eng.[J]. R-Rep, 2000,281.

    2. [2]

      Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T. and Kamigaito, O., J. Mater. Res., 1993, 8: 1179

    3. [3]

      Lan, T. and Pinnavaia, T.J., Chem. Mater., 1994, 6: 2216

    4. [4]

      Giannelis, E.P., Adv. Mater., 1996, 8: 29

    5. [5]

      Messersmith, P.B. and Giannelis, E.P., Chem. Mater., 1994, 6: 1719

    6. [6]

      Kojima, Y., Fukumori, K., Usuki, A., Okada, A. and Kurauchi, T., J. Mater. Sci. Lett., 1993, 12: 889

    7. [7]

      Wang, L., Xie, X., Su, S., Feng, J. and Wilkie, C.A., Polym. Degrad. Stab., 2010, 95: 572

    8. [8]

      Chen, W. and Qu, B., Chem. Mater., 2003, 15: 3208

    9. [9]

      Paul, D. and Robeson, L., Polymer, 2008 49: 3187

    10. [10]

      Wang, D.Y., Das, A., Leuteritz, A., Boldt, R., Häußler, L., Wagenknecht, U. and Heinrich, G., Polym. Degrad. Stab., 2011, 96: 285

    11. [11]

      Du, L., Qu, B. and Zhang, M., Polym. Degrad. Stab., 2007, 92: 497

    12. [12]

      Qiu, L., Chen, W. and Qu, B., Colloid. Polym. Sci., 2005, 283: 1241

    13. [13]

      Wang, G.A., Wang, C.C. and Chen, C.Y., Polym. Degrad. Stab., 2006, 91: 2443

    14. [14]

      Qiu, L. and Qu, B., J. Colloid Interface Sci., 2006, 301: 347

    15. [15]

      Huskić, M. and Žigon, M., Eur. Polym. J., 2007, 43: 4891

    16. [16]

      Krishna, S.V. and Pugazhenthi, G., J. Exp. Nanosci., 2012, 8: 19

    17. [17]

      Sahu, B. and Pugazhenthi, G., J. Appl. Polym. Sci., 2011, 120: 2485

    18. [18]

      Strawhecker, K.E. and Manias, E., Chem. Mater., 2000, 12: 2943

    19. [19]

      Unnikrishnan, L., Mohanty, S., Nayak, S.K. and Ali, A., Mater. Sci. Eng., A, 2011, 528: 3943

    20. [20]

      Leroux, F. and Besse, J.P., Chem. Mater., 2001, 13: 3507

    21. [21]

      Nalawade, P., Aware, B., Kadam, V. and Hirlekar, R., J. Sci. Ind. Res., 2009, 68: 267

    22. [22]

      Hong, N., Song, L., Wang, B., Stec., A.A., Hull, T.R., Zhan, J. and Hu, Y., Mater. Res. Bull., 2014, 49: 657

    23. [23]

      Li., M., Zhu, J.E., Zhang, L., Chen, X., Zhang, H., Zhang, F., Xu, S. and Evans, D.G., Nanoscale, 2011, 3: 4240

    24. [24]

      Wimalasiri, Y., Fan, R., Zhao, X.S. and Zou, L., Electrochim. Acta, 2014, 134: 127

    25. [25]

      Zhu, H., Liu, Q., Li, Z., Liu, J., Jing, X., Zhang, H. and Wang, J., RSC Adv., 2015, 5: 49204

    26. [26]

      Nyambo, C., Chen, D., Su, S. and Wilkie, C.A., Polym. Degrad. Stab., 2009, 94: 1298

    27. [27]

      Manzi-Nshuti, C., Wang, D., Hossenlopp, J.M. and Wilkie, C.A., Polym. Degrad. Stab., 2009, 94: 705

    28. [28]

      Li, B., Hu, Y., Liu, J., Chen, Z. and Fan, W., Colloid. Polym. Sci., 2003, 281: 998

    29. [29]

      Chen, W. and Qu, B., Polym. Degrad. Stab., 2005, 90: 162

    30. [30]

      Zhou, Z., Wang, S., Lu, L., Zhang, Y. and Zhang, Y., Compos. Sci. Technol., 2007, 67: 1861

    31. [31]

      Ivanov, I., Muke, S., Kao, N. and Bhattacharya, S.N., Polymer, 2001, 42: 9809

    32. [32]

      Al-Saleh, M.H. and Sundararaj, U., Composites Part A, 2011, 42: 2126

    33. [33]

      Ding, P. and Qu, B., J. Colloid Interface Sci., 2005, 291: 13

    34. [34]

      Gilman, J.W., Jackson, C.L., Morgan, A.B., Harris, Jr. R., Manias, E., Giannelis, E. P., Wuthenow, M., Hilton, D. and Philips, S.H., Chem. Mater., 2002, 12: 1886

    35. [35]

      Tomar, A., Mahendia, S. and Kumar, S., Adv. Appl. Sci. Res., 2011, 2: 65

    36. [36]

      Morgan, A.B. and Gilman, J.W., J. Appl. Polym. Sci., 2003, 87: 1329

    37. [37]

      Mohanty, S. and Nayak, S.K., J. Thermoplast. Compos., 2010, 23: 623

    38. [38]

      Shen, Z., Simon, G.P. and Cheng, Y.B., J. Appl. Polym. Sci., 2004, 92: 2101

    39. [39]

      Stretz, H.A., Paul, D.R., Li, R., Keskkula, H. and Cassidy, P.E., Polymer, 2005, 46: 2621

    40. [40]

      Coats, A.W. and Redfern, J.P., Nature, 1964, 201: 68

    41. [41]

      Chen, Y. and Wang, Q., Polym. Degrad. Stab., 2007, 92: 280

    42. [42]

      Krishna, S. and Pugazhenthi, G., J. Appl. Polym. Sci., 2011, 120: 1322

    43. [43]

      Criado, J.M., Málek, J. and Ortega, A., Thermochim. Acta, 1989, 147: 377

    44. [44]

      Senum, G.I. and Yang, R.T., J. Therm. Anal., 1977, 11: 445

    45. [45]

      Flynn, J.H., Thermochim. Acta, 1997, 300: 83

    46. [46]

      Park, S.J., Li, K. and Hong, S.K., J. Ind. Eng. Chem., 2005, 11: 561

    47. [47]

      Zhang, H.B., Zheng, W.G., Yan, Q., Jiang, Z.G. and Yu, Z.Z., Carbon, 2012, 50: 5117

    48. [48]

      Majid, M., Hassan, E.D., Davoud, A. and Saman, M., Composites Part B, 2011, 42: 2038

  • 加载中
    1. [1]

      Sinong WangShanshan JinXue YangYanyan HuangPeng LiuYi TangYuliang Yang . Development of Mg-Al LDH and LDO as novel protective materials for deacidification of paper-based relics. Chinese Chemical Letters, 2024, 35(9): 109890-. doi: 10.1016/j.cclet.2024.109890

    2. [2]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    3. [3]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    4. [4]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    5. [5]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    6. [6]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    7. [7]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    8. [8]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    9. [9]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    10. [10]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    11. [11]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    12. [12]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    13. [13]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    14. [14]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    15. [15]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    16. [16]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    17. [17]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    18. [18]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    19. [19]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    20. [20]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

Metrics
  • PDF Downloads(0)
  • Abstract views(585)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return