Citation: Hua-hua Huang, Chuan-hui Zhang, Ya-wei Qin, Hui Niu, Jin-yong Dong. SYNTHESIS OF STYRYL-CAPPED POLYPROPYLENE via METALLOCENE-MEDIATED COORDINATION POLYMERIZATION: APPLY TO POLYPROPYLENE MACROMOLECULAR ENGINEERING[J]. Chinese Journal of Polymer Science, ;2013, 31(4): 550-562. doi: 10.1007/s10118-013-1261-4
-
In this paper, we review our recent progress in the synthesis and application of styryl-capped polypropylene (PP-t-St), an excellent reactive polyolefin that is both convenient and efficient in synthesis and facile and versatile in application for preparing advanced polypropylene materials via macromolecular engineering. The synthesis of PP-t-St is made possible by a unique chain transfer reaction coordinated by a bis-styrenic molecule, such as 1,4-divinylbenzene (DVB) and 1,2-bis(4-vinylphenyl)ethane (BVPE), and hydrogen in typical C2-symmetric metallocene (e.g. rac-Me2Si(2-Me-4-Ph-Ind)2ZrCl2, in association with methylaluminocene, MAO) catalyzed propylene polymerization. The regio-selective 2,1-insertion of the styrenic double bond in DVB or BVPE into the overwhelmingly 1,2-fashioned Zr-PP propagating chain enables substantial dormancy of the catalyst active site, which triggers selective hydrogen chain transfer that, with the formed Zr-H species ultimately saturated by the insertion of propylene monomer, results in an exclusive capping of the afforded PP chains by styryl group at the termination end. With a highly reactive styryl group at chain end, PP-t-St has been used as a facile building block in PP macromolecular engineering together with the employment of state-of-the-art synthetic polymer chemistry to fabricate broad types of new polypropylene architectures.
-
Keywords:
- Polypropylene
-
-
[1]
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(623)
- HTML views(8)