Citation: Ling Xu, Gan-ji Zhong, Xu Ji, Zhong-ming Li. CRYSTALLIZATION BEHAVIOR AND MORPHOLOGY OF ONE-STEP REACTION COMPATIBILIZED MICROFIBRILLAR REINFORCED ISOTACTIC POLYPROPYLENE/POLY(ETHYLENE TEREPHTHALATE) (iPP/PET) BLENDS[J]. Chinese Journal of Polymer Science, ;2011, 29(5): 540-551. doi: 10.1007/s10118-011-1066-2 shu

CRYSTALLIZATION BEHAVIOR AND MORPHOLOGY OF ONE-STEP REACTION COMPATIBILIZED MICROFIBRILLAR REINFORCED ISOTACTIC POLYPROPYLENE/POLY(ETHYLENE TEREPHTHALATE) (iPP/PET) BLENDS

  • Received Date: 27 August 2010
    Revised Date: 13 October 2010

    Fund Project: This work was financially supported by National Natural Science Foundation of China (No. 20776087) and National Programs for High Technology Research and Development of China (No. 2008AA03Z510).

  • One-step reaction compatibilized microfibrillar reinforced iPP/PET blends (CMRB) were successfully prepared through a slit extrusion-hot stretching-quenching process. Crystallization behavior and morphology of CMRB were systematically investigated. Scanning electronic microscopy (SEM) observations showed blurry interface of compatibilized common blend (CCB). The crystallization behavior of neat iPP, CCB, microfibrillar reinforced iPP/PET blend (MRB) and CMRB was investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The increase of crystallization temperature and crystallization rate during nonisothermal crystallization process indicated both PET particles and microfibrils could serve as nucleating agents and PET microfibrils exhibited higher heterogeneous nucleation ability, which were also vividly revealed by results of POM. Compared with MRB sample, CMRB sample has lower crystallization temperature due to existence of PET microfibrils with smaller aspect ratio and wider distribution. In addition, since in situ compatibilizer tends to stay in the interphase, it could also hinder the diffusion of iPP molecules to the surface of PET phase, leading to decrease of crystallization rate. Two-dimensional wide-angle X-ray diffraction (2D-WAXD) was preformed to characterize the crystalline structure of the samples by injection molding, and it was found that well-developed PET microfibrils contained in MRB sample promoted formation of -phase of iPP.
  • 加载中
    1. [1]

  • 加载中

Metrics
  • PDF Downloads(0)
  • Abstract views(731)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return