Citation: G. K. Elyashevich, I. S. Kuryndin, I. Yu. Dmitriev, V. K. Lavrentyev, N. N. Saprykina, V. Bukošek. Orientation Efforts as Regulatory Factor of Structure Formation in Permeable Porous Poly(vinylidene fluoride) Films[J]. Chinese Journal of Polymer Science, ;2019, 37(12): 1283-1289. doi: 10.01007/s10118-019-2284-2 shu

Orientation Efforts as Regulatory Factor of Structure Formation in Permeable Porous Poly(vinylidene fluoride) Films

  • Corresponding author: G. K. Elyashevich, elya@hq.macro.ru
  • Received Date: 12 March 2019
    Revised Date: 24 April 2019
    Available Online: 24 June 2019

  • The manufacturing process of poly(vinylidene fluoride) microporous films containing through flow channels and permeable to liquids has been elaborated. The process is based on polymer melt extrusion with subsequent stages of annealing, uniaxial extensions (" cold” and " hot” drawing), and thermal stabilization. The effect of orientation parameters (melt draw ratio and extension degrees) on overall porosity, permeability, morphology, and content of polar piezoactive β-phase in crystalline structure of the films was investigated by filtration porosimetry, sorptometry, scanning electron microscopy, X-ray scattering, and mechanical properties measurements. It is shown that the through pores were formed by a percolation mechanism. It is observed that permeability and the β-phase content increased with the growth of extension degree at the pore formation stages but the portion of β-crystallites decreased with increasing melt draw ratio at extrusion, which permitted to regulate the combination of through permeability and piezoactivity values by variation of the preparation process parameters.
  • 加载中
    1. [1]

      Huskinson, B.; Marshak, M. P.; Suh, C.; Er, S.; Gerhardt, M. R.; Galvin, C. J.; Chen, X.; Aspuru-Guzik, A.; Gordon R. G.; Aziz, M. J. A metal-free organic-inorganic aqueous flow battery. Nature 2014, 505, 195–198.  doi: 10.1038/nature12909

    2. [2]

      Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 2001, 414, 625–627.  doi: 10.1038/414625a

    3. [3]

      Gutfleisch, O.; Willard, M. A.; Brück, E.; Chen, C. H.; Sankar, S. G.; Liu, J. P. Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv. Mater. 2011, 23, 821–842.  doi: 10.1002/adma.v23.7

    4. [4]

      Tu, W.; Zhou, Y.; Zou, Z. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 2014, 26, 4607–4626.  doi: 10.1002/adma.v26.27

    5. [5]

      Gheibi, A.; Latifi, M.; Merati, A. A.; Bagherzadeh, R. Electrical power generation from piezoelectric electrospun nanofibers membranes: Electrospinning parameters optimization and effect of membranes thickness on output electrical voltage. J. Polym. Res. 2014, 21, 1–7.

    6. [6]

      Park, T.; Kim, B.; Kim, Y.; Kim, E. Highly conductive PEDOT electrodes for harvesting dynamic energy through piezoelectric conversion. J. Mater. Chem. A 2014, 2, 5462–5469.  doi: 10.1039/C3TA14726F

    7. [7]

      Bae, S.; Kahya, O.; Sharma, B. K.; Kwon, J.; Cho, H. C.; Ozyilmaz B.; Ahn J. Graphene-P(VDF-TrFE) multilayer film for flexible applications. ACS Nano 2013, 4, 3130–3138.

    8. [8]

      Wen, X. N.; Yang, W. Q.; Jing, Q. S.; Wang, Z. L. Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves. ACS Nano 2014, 8, 7405–7412.  doi: 10.1021/nn502618f

    9. [9]

      Lee, J.-H.; Lee, K. Y.; Kumar, B.; Tien, N. T.; Lee, N.; Kim, S.-W. Highly sensitive stretchable transparent piezoelectric nanogenerators. Energy Environ. Sci. 2013, 6, 169–175.  doi: 10.1039/C2EE23530G

    10. [10]

      Hinchet, R.; Lee, S.; Ardila, G.; Mont`es, L.; Mouis, M.; Wang, Z. L. Performance optimization of vertical nanowire-based piezoelectric nanogenerators. Adv. Funct. Mater. 2014, 24, 971–977.  doi: 10.1002/adfm.201302157

    11. [11]

      Anton, S. R.; Sodano, H. A. A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 2007, 16, R1–R21.  doi: 10.1088/0964-1726/16/3/R01

    12. [12]

      Bowen, C. R.; Kim, H. A.: Weaver, P. M.; Dunn, S. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 2014, 7, 25–44.  doi: 10.1039/C3EE42454E

    13. [13]

      Chang, C.; Tran, V. H.; Wang, J.; Fuh, Y. K.; Lin, L. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 2010, 10, 726–731.  doi: 10.1021/nl9040719

    14. [14]

      Ottman, G. K.; Hofmann, H. F.; Bhatt, A. C.; Lesieutre, G. A. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans. Power Electron. 2002, 17, 669-676.  doi: 10.1109/TPEL.2002.802194

    15. [15]

      Qin, Y.; Wang, X.; Wang, Z. L. Microfibre-nanowire hybrid structure for energy scavenging. Nature 2008, 451, 809–813.  doi: 10.1038/nature06601

    16. [16]

      Liu, F.; Hashim, N. A.; Liu, Y.; Abed, M. R. M.; Li, K. Progress in the production and modification of PVDF membranes. J. Membrane Sci. 2011, 375, 1–27.  doi: 10.1016/j.memsci.2011.03.014

    17. [17]

      Kim, J. F.; Jung, J. T.; Wang, H. H.; Lee, S. Y.; Moore, T.; Sanguineti, A.; Drioli, E.; Lee, Y. M. Microporous PVDF membranes via thermally induced phase separation (TIPS) and stretching methods. J. Membrane Sci. 2016, 509, 94–104.  doi: 10.1016/j.memsci.2016.02.050

    18. [18]

      Cui, Z. Y.; Xu, Y. Y.; Zhu, L. P.; Wei, X. Z.; Zhang, C. F.; Zhu, B. K. Preparation of PVDF/PMMA blend microporous membranes for lithium ion batteries via thermally induced phase separation process. Mater. Lett. 2008, 62, 3809–3811.  doi: 10.1016/j.matlet.2008.04.071

    19. [19]

      Dmitriev, I. Yu.; Bukošek, V.; Lavrentyev, V. K.; Elyashevich, G. K. Structure and deformational behavior of poly(vinylidene fluoride) hard elastic films. Acta Chim. Slov. 2007, 54, 784–791.

    20. [20]

      Lei, C.; Hu, B.; Xu, R.; Cai, Q.; Shi, W. Influence of room-temperature-stretching technology on the crystalline morphology and microstructure of PVDF hard elastic film. Appl. Polym. Sci. 2014, 131, P. 400077. DOI: 10.1002/app.40077  doi: 10.1002/app.40077

    21. [21]

      Sadeghi, F.; Tabatabaei, S. H.; Ajji, A.; Carreau, P. J. Effect of PVDF characteristics on extruded film morphology and porous membranes feasibility by stretching. J. Polym. Sci., Part B: Polym. Phys. 2009, 47, 1219–1229.  doi: 10.1002/polb.v47:12

    22. [22]

      Elyashevich, G. K.; Kuryndin, I. S.; Lavrentyev, V. K.; Bobrovsky, A. Yu.; Bukošek, V. Porous structure, permeability, and mechanical properties of polyolefin microporous films. Phys. Solid State 2012, 54, 1907–1916.

    23. [23]

      Salimi, A.; Yousefi, A. A. FTIR studies of β-phase crystal formation in stretched PVDF films. Polymer Test. 2003, 22, 699–704.  doi: 10.1016/S0142-9418(03)00003-5

    24. [24]

      Hu, B.; Cai, Q.; Xu, R.; Mo, H.; Chen, C.; Zhang, F.; Lei, C. Influence of uniaxial cold stretching followed by uniaxial hot stretching conditions on crystal transformation and microstructure in extrusion cast and annealed polyvinylidene fluoride porous membranes. J. Plast. Film Sheet. 2015, 31, 269–285.  doi: 10.1177/8756087914564394

    25. [25]

      Stauffer, D.; Aharony, A. Introduction to percolation theory. London, Taylor and Francis, 1994.

    26. [26]

      Elyashevich, G. K.; Rosova, E. Y.; Karpov, E. A. Microporous polyethylene film and method of its production. Russian Federation Patent 140,936. April 15, 1997.

    27. [27]

      Elyashevich, G. K.; Karpov, E. A.; Kozlov, A. G. Deformational behavior and mechanical properties of hard elastic and porous films of polyethylene. In Macromol. Symp. «Mechanical Behavior of Polymeric Materials». Ed.: J. Kahovec, Wiley-VCH, 1999, Vol. 147, pp. 91–101.

    28. [28]

      Xu, J.; Johnson M.; Wilkes G. L. A tubular film extrusion of poly(vinylidene fluoride): Structure/process/property behavior as a function of molecular weight. Polymer 2004, 45, 5327- 5340.  doi: 10.1016/j.polymer.2004.04.071

    29. [29]

      Ramadan, K. S.; Sameoto, D; Evoy, S. A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater. Struct. 2014, 23, 033001. DOI:10.1088/0964-1726/23/3/033001  doi: 10.1088/0964-1726/23/3/033001

    30. [30]

      Wan, C.; Bowen, C. R. Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro- and macro-structure. J. Mater. Chem. A 2017, 5, 3091–3128.  doi: 10.1039/C6TA09590A

    31. [31]

      Martins, P.; Lopes, A. C.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sc. 2014, 39, 683–706.  doi: 10.1016/j.progpolymsci.2013.07.006

    32. [32]

      Hermans, P. H.; Weidinger, A. On the determination of the crystalline fraction of polyethylenes from X-ray diffraction. Macromol. Chem. 1961, 44, 24–36.  doi: 10.1002/macp.1961.020440103

    33. [33]

      Kuryndin, I. S.; Lavrentyev, V. K.; Bukošek, V.; Elyashevich, G. K. Percolation transitions in porous polyethylene and polypropylene films with lamellar structures. Polym. Sci., Ser. A. 2015, 57, 717–722.

    34. [34]

      Zheng, Y. R.; Zhang, J.; Sun, X. L.; Li, H. H.; Ren, Z. J.; Yan, S. K. Enhanced αγ′ transition of poly(vinylidene fluoride) by step crystallization and subsequent annealing. Chinese J. Polym. Sci. 2018, 36, 598−603.  doi: 10.1007/s10118-018-2040-z

    35. [35]

      Zheng, Y. R.; Zhang, J.; Sun, X. L.; Li, H. H.; Ren, Z. J.; Yan, S. K. Crystal structure regulation of ferroelectric poly(vinylidene fluoride) via controlled melt-recrystallization. Ind. Eng. Chem. Res. 2017, 56, 4580−4587.  doi: 10.1021/acs.iecr.7b00543

    36. [36]

      Nakamura, K.; Sawai, D.; Watanabe, Yu.; Taguchi, D.; Takahashi, Yo.; Furukawa, T.; Kanamoto, T. Effect of annealing on the structure and properties of poly(vinylidene fluoride) β-form films. J. Polym. Sc., Part B: Polym. Phys. 2003, 41, 1701–1712.  doi: 10.1002/(ISSN)1099-0488

    37. [37]

      Darestani, M. T.; Coster, H. G. L.; Chilcott, T. C.; Fleming, S.; Nagarajan, V.; An, H. Piezoelectric membranes for separation processes: Fabrication and piezoelectric properties. J. Membr. Sci. 2013, 434, 184-192.  doi: 10.1016/j.memsci.2013.01.035

  • 加载中
    1. [1]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    2. [2]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    3. [3]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    4. [4]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    5. [5]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    6. [6]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    7. [7]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    8. [8]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    9. [9]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    10. [10]

      Yuqing ZhuHaohao ChenLi WangLiqun YeHoule ZhouQintian PengHuaiyong ZhuYingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884

    11. [11]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    12. [12]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    13. [13]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    14. [14]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

    15. [15]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    16. [16]

      Xin ZhangJunyu ChenXiang PeiLinxin YangLiang WangLuona ChenGuangmei YangXibo PeiQianbing WanJian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889

    17. [17]

      Zhenzhen Zhao Meichen Jiao Jiejie Ling Han Jiang Yan Gao Hao Xu Hai-Qing Li Jingang Jiang Peng Wu Le Xu . Toward the microporous zeolite family with tunable large-medium cage and pore opening. Chinese Journal of Structural Chemistry, 2024, 43(9): 100336-100336. doi: 10.1016/j.cjsc.2024.100336

    18. [18]

      Cheng ChengNasir AliJi LiuJuan QiaoMing WangLi Qi . Construction of degradable liposome-templated microporous metal-organic frameworks with commodious space for enzymes. Chinese Chemical Letters, 2024, 35(11): 109812-. doi: 10.1016/j.cclet.2024.109812

    19. [19]

      Liwen WangBoyang WangSiyu LuShubo LvXiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497

    20. [20]

      Husitu LinShuangkun ZhangDianfa ZhaoYongkang WangWei LiuFan YangJianjun LiuDongpeng YanZhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795

Metrics
  • PDF Downloads(0)
  • Abstract views(680)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return