2025 Volume 41 Issue 7
2025, 41(7): 100066
doi: 10.1016/j.actphy.2025.100066
Abstract:
电容去离子(CDI)是一种具有广阔前景的电脱盐技术。通过引入成本低、无毒的电极材料,CDI在水体硬度离子的选择性去除方面呈现显著优势。丝光沸石(MOR)是天然的、环保型离子交换材料。本研究通过静电纺丝法,将MOR有效嵌入纳米纤维,随后进行炭化处理得到丝光沸石负载氮掺杂碳纳米纤维(MOR@N-CNF)。研究证实了MOR在碳纳米纤维基体中均匀分布。MOR@N-CNF表现出增强的亲水性的高的比表面积。而且纤维柔性好、导电性高,作为自支撑电极 在CaCl2溶液中,呈现高的电化学比电容(162.7 F·g-1)。直接用于CDI阴极与活性炭(AC)阳极构成非对称CDI系统,进行选择性硬度离子吸附。MOR@N-CNF阴极对Mg2+和Ca2+的吸附容量分别为1501和1416 μmol·g-1,且对这两种离子的选择性远高于Na+ (对Ca2+的选择性系数为9.7,对Mg2+的选择性系数为8.9)。经过40次循环测试后,该电极保留了78%的吸附能力,展现出优异的循环稳定性。本研究不仅为离子交换型复合电极材料的制备提供了新思路,也进一步凸显了CDI技术在硬水软化领域的潜力。
电容去离子(CDI)是一种具有广阔前景的电脱盐技术。通过引入成本低、无毒的电极材料,CDI在水体硬度离子的选择性去除方面呈现显著优势。丝光沸石(MOR)是天然的、环保型离子交换材料。本研究通过静电纺丝法,将MOR有效嵌入纳米纤维,随后进行炭化处理得到丝光沸石负载氮掺杂碳纳米纤维(MOR@N-CNF)。研究证实了MOR在碳纳米纤维基体中均匀分布。MOR@N-CNF表现出增强的亲水性的高的比表面积。而且纤维柔性好、导电性高,作为自支撑电极 在CaCl2溶液中,呈现高的电化学比电容(162.7 F·g-1)。直接用于CDI阴极与活性炭(AC)阳极构成非对称CDI系统,进行选择性硬度离子吸附。MOR@N-CNF阴极对Mg2+和Ca2+的吸附容量分别为1501和1416 μmol·g-1,且对这两种离子的选择性远高于Na+ (对Ca2+的选择性系数为9.7,对Mg2+的选择性系数为8.9)。经过40次循环测试后,该电极保留了78%的吸附能力,展现出优异的循环稳定性。本研究不仅为离子交换型复合电极材料的制备提供了新思路,也进一步凸显了CDI技术在硬水软化领域的潜力。
2025, 41(7): 100072
doi: 10.1016/j.actphy.2025.100072
Abstract:
电容去离子(Capacitive deionization,CDI)是一种新型的海水淡化技术,而电极材料是影响脱盐性能的关键因素。采用简单易行的水热法制备了氮掺杂碳量子点修饰的羟基氧化铁(NCQDs/FeOOH)电极材料,并将其作为CDI器件阴极,探究了脱盐特性。微结构测试表明复合材料具有均匀纳米颗粒网络结构、分级孔分布及丰富孔隙率。电化学测试表明复合电极具有突出的电容性能及导电性能。当工作电压为1.4 V,NaCl溶液初始浓度为2000 mg·L-1时,NCQDs/FeOOH电极的GACNaCl高达56.52 mg·g-1,且具有突出的循环稳定性。此外,CV (cyclic voltammetry)及非原位XPS (X-ray photoelectron spectroscopy)测试表明以赝电容反应为主的盐离子吸附机制。
电容去离子(Capacitive deionization,CDI)是一种新型的海水淡化技术,而电极材料是影响脱盐性能的关键因素。采用简单易行的水热法制备了氮掺杂碳量子点修饰的羟基氧化铁(NCQDs/FeOOH)电极材料,并将其作为CDI器件阴极,探究了脱盐特性。微结构测试表明复合材料具有均匀纳米颗粒网络结构、分级孔分布及丰富孔隙率。电化学测试表明复合电极具有突出的电容性能及导电性能。当工作电压为1.4 V,NaCl溶液初始浓度为2000 mg·L-1时,NCQDs/FeOOH电极的GACNaCl高达56.52 mg·g-1,且具有突出的循环稳定性。此外,CV (cyclic voltammetry)及非原位XPS (X-ray photoelectron spectroscopy)测试表明以赝电容反应为主的盐离子吸附机制。
2025, 41(7): 100074
doi: 10.1016/j.actphy.2025.100074
Abstract:
光催化二氧化碳(CO2)还原已成为一种有效的技术用于将CO2转化为高价值的化学品。金属有机框架(MOFs)材料因其结构可调、比表面积大、催化性能好和光响应性优异等特点而展现出巨大的潜力。本文采用MOF材料NNU-55(Fe)将CO2光催化转化为一氧化碳(CO)。通过改变无机阴离子配体调节金属活性中心(Fe-N4)的电子性质,可以轻松调控NNU-55(Fe) MOFs的光催化性能。研究表明,相较于SO42-和Cl-配位的催化剂,NO3-配位的NNU-55(Fe)展现出更优异的催化性能,在3 h内实现了124 μmol·g-1的CO产量。NO-3更强的电子供给能力提升了Fe中心的电子密度,降低了Fe的d带中心,并增强了吸附系统成键轨道的占据,从而提高了CO2的吸附能力和还原活性。本研究通过改变金属位点的无机配体来调节MOFs电子结构和催化活性的策略,为开发高效光催化材料提供了新的思路。
光催化二氧化碳(CO2)还原已成为一种有效的技术用于将CO2转化为高价值的化学品。金属有机框架(MOFs)材料因其结构可调、比表面积大、催化性能好和光响应性优异等特点而展现出巨大的潜力。本文采用MOF材料NNU-55(Fe)将CO2光催化转化为一氧化碳(CO)。通过改变无机阴离子配体调节金属活性中心(Fe-N4)的电子性质,可以轻松调控NNU-55(Fe) MOFs的光催化性能。研究表明,相较于SO42-和Cl-配位的催化剂,NO3-配位的NNU-55(Fe)展现出更优异的催化性能,在3 h内实现了124 μmol·g-1的CO产量。NO-3更强的电子供给能力提升了Fe中心的电子密度,降低了Fe的d带中心,并增强了吸附系统成键轨道的占据,从而提高了CO2的吸附能力和还原活性。本研究通过改变金属位点的无机配体来调节MOFs电子结构和催化活性的策略,为开发高效光催化材料提供了新的思路。
2025, 41(7): 100078
doi: 10.1016/j.actphy.2025.100078
Abstract:
肖特基势垒高度(SBH)的准确预测对优化半金属/半导体异质结器件的性能至关重要。目前,二维半金属/半导体异质结构已在实验上得到广泛研究。然而,基于第一性原理的SBH预测通常需要在包含超过103个原子的超胞中求解从头算哈密顿量。计算复杂度的增加不仅导致效率极低,还限制了异质结器件的设计和优化。本研究采用密度泛函理论结合核心能级对准方法,将过渡金属二碲化物半金属/硅异质结的超胞尺寸减少了一个数量级,计算得到的SBH与实验结果一致。进一步研究了多种二维半金属化合物,结果表明候选材料的空穴SBH均低于电子SBH,此外,厚度效应在三到五层后变得可以忽略不计。本研究为复杂异质结构中SBH计算提供一种高效的计算框架,能够为高性能二维半金属异质结器件的优化设计提供理论依据
肖特基势垒高度(SBH)的准确预测对优化半金属/半导体异质结器件的性能至关重要。目前,二维半金属/半导体异质结构已在实验上得到广泛研究。然而,基于第一性原理的SBH预测通常需要在包含超过103个原子的超胞中求解从头算哈密顿量。计算复杂度的增加不仅导致效率极低,还限制了异质结器件的设计和优化。本研究采用密度泛函理论结合核心能级对准方法,将过渡金属二碲化物半金属/硅异质结的超胞尺寸减少了一个数量级,计算得到的SBH与实验结果一致。进一步研究了多种二维半金属化合物,结果表明候选材料的空穴SBH均低于电子SBH,此外,厚度效应在三到五层后变得可以忽略不计。本研究为复杂异质结构中SBH计算提供一种高效的计算框架,能够为高性能二维半金属异质结器件的优化设计提供理论依据
2025, 41(7): 100079
doi: 10.1016/j.actphy.2025.100079
Abstract:
Green hydrogen holds great promise for the future energy ecosystem and designing alternative electrocatalysts is essential for industrial-scale green hydrogen production for high-current water splitting under industrial conditions. Herein, the Zn-doped NiBP microsphere electrocatalyst is fabricated via a multi-step process combining hydrothermal and electrochemical approaches, followed by post-annealing. The optimized Zn/NiBP electrode outperforms the majority of previously reported catalysts, with low overpotentials of 95 mV for HER (hydrogen evolution reaction) and 280 mV for OER (oxygen evolution reaction) at 100 mA·cm-2 in 1 mol·L-1 KOH. The bifunctional Zn/NiBP||Zn/NiBP demonstrates a 3.10 V cell voltage at 2000 mA·cm-2 in 1 mol·L-1 KOH, surpassing the benchmark Pt/C||RuO2systems. The Pt/C||Zn/NiBP hybrid system exhibits exceptionally low cell voltages of 2.50 and 2.30 V at 2000 mA·cm-2 in 1 and 6 mol·L-1 KOH respectively, demonstrating excellent overall water-splitting performance under challenging industrial conditions. Furthermore, the 2-E system shows remarkable stability over 120 hours at 1000 mA·cm-2 in 1 and 6 mol·L-1 KOH, indicating the robust anti-corrosion properties of the Zn/NiBP microspheres. Zn-doped NiBP microspheres exhibit enhanced electrochemical conductivity, active surface area and intrinsic electrocatalytic activity due to synergistic interactions among Zn, Ni, B and P, enabling rapid charge transfer and superior electrocatalytic performance for efficient hydrogen generation.
Green hydrogen holds great promise for the future energy ecosystem and designing alternative electrocatalysts is essential for industrial-scale green hydrogen production for high-current water splitting under industrial conditions. Herein, the Zn-doped NiBP microsphere electrocatalyst is fabricated via a multi-step process combining hydrothermal and electrochemical approaches, followed by post-annealing. The optimized Zn/NiBP electrode outperforms the majority of previously reported catalysts, with low overpotentials of 95 mV for HER (hydrogen evolution reaction) and 280 mV for OER (oxygen evolution reaction) at 100 mA·cm-2 in 1 mol·L-1 KOH. The bifunctional Zn/NiBP||Zn/NiBP demonstrates a 3.10 V cell voltage at 2000 mA·cm-2 in 1 mol·L-1 KOH, surpassing the benchmark Pt/C||RuO2systems. The Pt/C||Zn/NiBP hybrid system exhibits exceptionally low cell voltages of 2.50 and 2.30 V at 2000 mA·cm-2 in 1 and 6 mol·L-1 KOH respectively, demonstrating excellent overall water-splitting performance under challenging industrial conditions. Furthermore, the 2-E system shows remarkable stability over 120 hours at 1000 mA·cm-2 in 1 and 6 mol·L-1 KOH, indicating the robust anti-corrosion properties of the Zn/NiBP microspheres. Zn-doped NiBP microspheres exhibit enhanced electrochemical conductivity, active surface area and intrinsic electrocatalytic activity due to synergistic interactions among Zn, Ni, B and P, enabling rapid charge transfer and superior electrocatalytic performance for efficient hydrogen generation.
2025, 41(7): 100081
doi: 10.1016/j.actphy.2025.100081
Abstract:
铂(Pt)作为优异的氧还原助催化剂,在光催化产H2O2方面具有巨大潜力。然而,Pt对O2的吸附能力过强,易使O―O键裂解,从而降低2电子氧还原反应(ORR)生成H2O2的选择性。在本研究中,通过调节助剂结构改变Pt的电子结构,从而削弱Pt―O键的强度。本文通过两步光沉积法在BiVO4的(010)面上连续修饰了铂和银助催化剂。由于在此过程中存在置换反应,最终合成了一种具有中空AgPt合金核和富电子Ptδ-壳(AgPt@Pt)结构的协同催化剂。光催化实验结果表明:修饰空心结构AgPt@Pt助剂的BiVO4产生H2O2的速率达到了1021.5 μmol·L-1,且其对应的量子效率(AQE)为5.07%,是Pt/BiVO4光催化剂(35.7 μmol·L-1)的28.6倍。此外,密度泛函理论计算和X射线光电子能谱表征表明:AgPt合金向Pt壳转移电子,生成富电子的Ptδ-活性位点,进而增加了AgPt@Pt助催化剂中Pt―Oads反键轨道的占有率。这种电子再分布削弱了O2在Pt上的吸附强度,促进了2电子ORR反应,并显著提高了H2O2的生成效率。这一合成策略为制备具有更高H2O2选择性的铂基纳米助催化剂提供了可靠的方法。
铂(Pt)作为优异的氧还原助催化剂,在光催化产H2O2方面具有巨大潜力。然而,Pt对O2的吸附能力过强,易使O―O键裂解,从而降低2电子氧还原反应(ORR)生成H2O2的选择性。在本研究中,通过调节助剂结构改变Pt的电子结构,从而削弱Pt―O键的强度。本文通过两步光沉积法在BiVO4的(010)面上连续修饰了铂和银助催化剂。由于在此过程中存在置换反应,最终合成了一种具有中空AgPt合金核和富电子Ptδ-壳(AgPt@Pt)结构的协同催化剂。光催化实验结果表明:修饰空心结构AgPt@Pt助剂的BiVO4产生H2O2的速率达到了1021.5 μmol·L-1,且其对应的量子效率(AQE)为5.07%,是Pt/BiVO4光催化剂(35.7 μmol·L-1)的28.6倍。此外,密度泛函理论计算和X射线光电子能谱表征表明:AgPt合金向Pt壳转移电子,生成富电子的Ptδ-活性位点,进而增加了AgPt@Pt助催化剂中Pt―Oads反键轨道的占有率。这种电子再分布削弱了O2在Pt上的吸附强度,促进了2电子ORR反应,并显著提高了H2O2的生成效率。这一合成策略为制备具有更高H2O2选择性的铂基纳米助催化剂提供了可靠的方法。
2025, 41(7): 100082
doi: 10.1016/j.actphy.2025.100082
Abstract:
锂硫(Li-S)电池因其高理论能量密度被视为下一代能源存储系统中最有前景的候选者之一。然而,Li-S电池的实际应用受到锂离子(Li+)传输效率低和由于穿梭效应引起的快速容量衰减的限制。在此,我们报道了一种复合材料,由聚乙二醇(PEG)和氮化钒(VN)纳米片涂覆在商业聚丙烯(PP)隔膜上,称为PEG-VN@PP隔膜。VN纳米片所表现出的超催化效应和吸附特性显著增强了多硫化物的转化,从而提高了Li-S电池的容量和稳定性。由于PEG的涂层,Li+被极性官能团吸引,实现了选择性传输,改善了Li+的传输效率和Li-S电池的倍率性能。使用硫质量负载为1.2 mg·cm-2的碳纳米管/硫阴极组装的Li-S电池,展现出高达782.0 mAh·g-1的比容量,并在1C (1675 mA·g-1)条件下经过700个循环后平均容量衰减为0.048%。
锂硫(Li-S)电池因其高理论能量密度被视为下一代能源存储系统中最有前景的候选者之一。然而,Li-S电池的实际应用受到锂离子(Li+)传输效率低和由于穿梭效应引起的快速容量衰减的限制。在此,我们报道了一种复合材料,由聚乙二醇(PEG)和氮化钒(VN)纳米片涂覆在商业聚丙烯(PP)隔膜上,称为PEG-VN@PP隔膜。VN纳米片所表现出的超催化效应和吸附特性显著增强了多硫化物的转化,从而提高了Li-S电池的容量和稳定性。由于PEG的涂层,Li+被极性官能团吸引,实现了选择性传输,改善了Li+的传输效率和Li-S电池的倍率性能。使用硫质量负载为1.2 mg·cm-2的碳纳米管/硫阴极组装的Li-S电池,展现出高达782.0 mAh·g-1的比容量,并在1C (1675 mA·g-1)条件下经过700个循环后平均容量衰减为0.048%。
2025, 41(7): 100071
doi: 10.1016/j.actphy.2025.100071
Abstract:
Photocatalysis technology, utilizing solar-driven reactions, is poised to emerge as a reliable strategy to alleviate environmental and energy pressures. Thus, whether the photocatalytic performance is excellent depends on the reasonable design of photocatalysts. By considering factors such as morphology engineering, band gap engineering, co-catalyst modification, and heterojunction construction, the photocatalysts with superior performance can be developed. Inspired by this unique characteristic, photocatalysts with a hollow structure endow numerous advantages in photocatalyst design, including enhanced multiple refraction and reflection of light, reduced transport distance of photo-induced carriers, and provided plentiful surface reaction sites. Herein, we systematically review the latest progress of hollow structured photocatalysts and summarize the diversity from geometric morphology, internal structure, and chemical composition. Specifically, the synthetic strategies of hollow structured photocatalysts are highlighted, including hard template, soft template, and template free methods. Furthermore, a series of hollow structured photocatalysts have also been described in detail, such as metal oxide, metal sulfide, metal-organic framework, and covalent organic framework. Subsequently, we present the potential applications of hollow structured photocatalysts in photocatalytic pollutant degradation, H2 production, H2O2 production, CO2 reduction, and N2 fixation. Simultaneously, the relevant relationship between hollow structure and photocatalytic performance is deeply discussed. Toward the end of the review, we introduce the challenges and prospects in the future development direction of hollow structured photocatalysts. The review can provide inspiration for better designing hollow structured photocatalysts to meet the needs of environmental remediation and energy conversion.
Photocatalysis technology, utilizing solar-driven reactions, is poised to emerge as a reliable strategy to alleviate environmental and energy pressures. Thus, whether the photocatalytic performance is excellent depends on the reasonable design of photocatalysts. By considering factors such as morphology engineering, band gap engineering, co-catalyst modification, and heterojunction construction, the photocatalysts with superior performance can be developed. Inspired by this unique characteristic, photocatalysts with a hollow structure endow numerous advantages in photocatalyst design, including enhanced multiple refraction and reflection of light, reduced transport distance of photo-induced carriers, and provided plentiful surface reaction sites. Herein, we systematically review the latest progress of hollow structured photocatalysts and summarize the diversity from geometric morphology, internal structure, and chemical composition. Specifically, the synthetic strategies of hollow structured photocatalysts are highlighted, including hard template, soft template, and template free methods. Furthermore, a series of hollow structured photocatalysts have also been described in detail, such as metal oxide, metal sulfide, metal-organic framework, and covalent organic framework. Subsequently, we present the potential applications of hollow structured photocatalysts in photocatalytic pollutant degradation, H2 production, H2O2 production, CO2 reduction, and N2 fixation. Simultaneously, the relevant relationship between hollow structure and photocatalytic performance is deeply discussed. Toward the end of the review, we introduce the challenges and prospects in the future development direction of hollow structured photocatalysts. The review can provide inspiration for better designing hollow structured photocatalysts to meet the needs of environmental remediation and energy conversion.
2025, 41(7): 100073
doi: 10.1016/j.actphy.2025.100073
Abstract:
The escalating frequency of extreme weather events globally has necessitated immediate action to mitigate the impacts and threats posed by excessive greenhouse gas emissions, particularly carbon dioxide (CO2). Consequently, reducing CO2 emissions has become imperative, with decarbonization techniques being extensively investigated worldwide to achieve net-zero emissions. From an energy perspective, CO2 represents an abundant and low-cost carbon resource that can be converted into high-value chemical products through reactions with hydrocarbons, including alkanes, alkenes, aromatic hydrocarbons, and polyolefins. Through hydrogen transfer, CO2 can be reduced to CO, accompanied by the formation of H2O. CO2 and hydrocarbons can also be transformed into syngas (CO and H2) via dry reforming. Furthermore, CO2 can be incorporated into hydrocarbon molecules, resulting in carbon chain growth, such as the production of alcohols, carboxylic acids, and aromatics. However, due to the thermodynamic stability and kinetic inertness of CO2, as well as the high bond energy and low polarity of hydrocarbon C―H bonds, the conversion of CO2 and hydrocarbons remains a highly challenging and demanding strategic objective. This review focuses on the synergistic catalytic valorization of CO2 and hydrocarbons using heterogeneous catalysts, summarizing recent advancements in coupling CO2 with various hydrocarbons. It also examines relevant kinetic models, including Langmuir-Hinshelwood and Eley-Rideal mechanisms. For catalyst design, bifunctional catalysts with distinct active sites can independently activate these two reactive molecules, and the modulation of acid-base properties, oxygen vacancies, and interfacial interactions represents an effective strategy to optimize catalytic performance. Finally, future directions for advancing CO2-hydrocarbon co-utilization technologies are proposed, along with recommendations for low-carbon development strategies.
The escalating frequency of extreme weather events globally has necessitated immediate action to mitigate the impacts and threats posed by excessive greenhouse gas emissions, particularly carbon dioxide (CO2). Consequently, reducing CO2 emissions has become imperative, with decarbonization techniques being extensively investigated worldwide to achieve net-zero emissions. From an energy perspective, CO2 represents an abundant and low-cost carbon resource that can be converted into high-value chemical products through reactions with hydrocarbons, including alkanes, alkenes, aromatic hydrocarbons, and polyolefins. Through hydrogen transfer, CO2 can be reduced to CO, accompanied by the formation of H2O. CO2 and hydrocarbons can also be transformed into syngas (CO and H2) via dry reforming. Furthermore, CO2 can be incorporated into hydrocarbon molecules, resulting in carbon chain growth, such as the production of alcohols, carboxylic acids, and aromatics. However, due to the thermodynamic stability and kinetic inertness of CO2, as well as the high bond energy and low polarity of hydrocarbon C―H bonds, the conversion of CO2 and hydrocarbons remains a highly challenging and demanding strategic objective. This review focuses on the synergistic catalytic valorization of CO2 and hydrocarbons using heterogeneous catalysts, summarizing recent advancements in coupling CO2 with various hydrocarbons. It also examines relevant kinetic models, including Langmuir-Hinshelwood and Eley-Rideal mechanisms. For catalyst design, bifunctional catalysts with distinct active sites can independently activate these two reactive molecules, and the modulation of acid-base properties, oxygen vacancies, and interfacial interactions represents an effective strategy to optimize catalytic performance. Finally, future directions for advancing CO2-hydrocarbon co-utilization technologies are proposed, along with recommendations for low-carbon development strategies.
2025, 41(7): 100075
doi: 10.1016/j.actphy.2025.100075
Abstract:
Photocatalytic technology is considered to be an efficient and green approach for removing tetracycline hydrochloride (TC) to meet the demands of sustainable development. Here, a facile stirring process was employed to construct Ti3C2/Bi12O17Br2 (termed as TBOB) Schottky heterojunction with a hierarchical structure, in which the Bi12O17Br2 component was closely deposited on the surface of Ti3C2. The TC photodegradation performance was estimated for all catalysts under simulated solar light. Compared with Bi12O17Br2, TBOB materials exhibited the superior photodegradation activity due to the synergistic effect between Ti3C2 and Bi12O17Br2, which could increase light harvesting capacity derived from Ti3C2 loading, promote the charge carrier separation due to the formed Schottky heterojunction, and facilitate surface reaction kinetics owing to the photothermal effect. Besides, some crucial influencing factors on the photocatalytic performance over TBOB composites were separately studied in detail. The free radical capture experiment and electron paramagnetic resonance (EPR) technique confirmed the predominant active species of ·O2- and e- for the TC photodegradation. Combined with experimental analysis and theoretical calculations, insight into the charge carrier transfer and photodegradation mechanisms were proposed. This study provides theoretical and experimental insights for the rational design of high-efficiency photothermal-assisted Ti3C2-based photocatalysts.
Photocatalytic technology is considered to be an efficient and green approach for removing tetracycline hydrochloride (TC) to meet the demands of sustainable development. Here, a facile stirring process was employed to construct Ti3C2/Bi12O17Br2 (termed as TBOB) Schottky heterojunction with a hierarchical structure, in which the Bi12O17Br2 component was closely deposited on the surface of Ti3C2. The TC photodegradation performance was estimated for all catalysts under simulated solar light. Compared with Bi12O17Br2, TBOB materials exhibited the superior photodegradation activity due to the synergistic effect between Ti3C2 and Bi12O17Br2, which could increase light harvesting capacity derived from Ti3C2 loading, promote the charge carrier separation due to the formed Schottky heterojunction, and facilitate surface reaction kinetics owing to the photothermal effect. Besides, some crucial influencing factors on the photocatalytic performance over TBOB composites were separately studied in detail. The free radical capture experiment and electron paramagnetic resonance (EPR) technique confirmed the predominant active species of ·O2- and e- for the TC photodegradation. Combined with experimental analysis and theoretical calculations, insight into the charge carrier transfer and photodegradation mechanisms were proposed. This study provides theoretical and experimental insights for the rational design of high-efficiency photothermal-assisted Ti3C2-based photocatalysts.
2025, 41(7): 100080
doi: 10.1016/j.actphy.2025.100080
Abstract: