2015 Volume 31 Issue 9

Cover and Table of Contents for Vol.31 No. 9
2015, 31(9):
[Abstract](317) [FullText HTML] [PDF 44135KB](799)
Abstract:
Recent Progress in the Removal of Volatile Organic Compounds by Mesoporous Silica Materials and Supported Catalysts
ZHANG Xiao-Dong , WANG Yin , YANG Yi-Qiong , CHEN Dan
2015, 31(9): 1633-1646  doi: 10.3866/PKU.WHXB201507281
[Abstract](881) [FullText HTML] [PDF 6049KB](874)
Abstract:

Mesoporous silica materials have attracted much attention because of their large surface area, uniform pore-size distribution, large pore size, and wide potential applications in the fields of separation, adsorption, and catalysis. The progress in the removal of volatile organic compounds (VOCs, mainly containing hydrocarbons, methanol, formaldehyde, acetone, benzene, toluene, naphthalene, and ethyl acetate) by mesoporous silica materials and supported catalysts in recent years is reviewed. The effect of the structure of mesoporous silica materials on the adsorption of VOCs is discussed. We also discuss the catalytic performance and reaction mechanism for catalytic VOC oxidation over supported catalysts. The recent developments in catalytic combustion of toluene are examined in detail. We found that the surface environment, pore structure, and morphology of mesoporous silica materials are the main factors influencing adsorption of VOC molecules. The application of noble metal catalyst focuses on improving poison resistance and reducing cost. The research on non-noble metal catalysts focuses on developing supported mixed-metal oxide catalysts with high activity. Future developments of mesoporous silica materials and supported catalysts are highlighted. The design of the catalyst can be carried out from two aspects: the silica support and the mesoporous channel. This review will be helpful in choosing an appropriate catalyst for the removal of VOCs with high activity and stability.

Experimental and Density Functional Theoretical Studies on the Spectra of N,N'-di[3-hydroxy-4-(2-benzothiazole)phenyl]urea
CUI Ying-Na , YIN Jing-Mei , JIA Ying-Ping , LI Shen-Min
2015, 31(9): 1647-1654  doi: 10.3866/PKU.WHXB201506182
[Abstract](520) [FullText HTML] [PDF 1404KB](433)
Abstract:

The experimental infrared (IR), nuclear magnetic resonance (NMR), and ultraviolet (UV) spectra, and density functional theory (DFT) calculations of the novel compound N,N'-di[3-hydroxy-4-(2-benzothiazole) phenyl]urea (4-DHBTU) are presented. Compared with the UV spectra of the 2-(4-amino-2-hydroxyphenyl) benzothiazole (4-AHBT) monomer, the experimental spectra of 4-DHBTU, a dimer of 4-AHBT, show dualwavelength absorption with significantly enhanced absorption intensity and an obvious red shift of the maximum absorption peak. Analysis of the experimental spectra and the DFT calculations shows that the structures of cis-C11 and trans-C11 are the two most stable conformers, and that the main reason for the different UV spectral properties of the dimer and monomer is the coexistence of cis-C11, trans-C11, cis-C22, and trans-C22 in the 4-DHBTU sample. In addition, the DFT calculations indicate that a hydrogen-bonding interaction between 4-DHBTU and the dimethyl sulfoxide (DMSO) solvent leads to a large 1H NMR chemical shift for atoms 15H and 16H in 4-DHBTU.

Dynamics of Excited o-Dichlorobenzene
LI Xiao-Ying , WANG Li , WANG Yan-Qiu , SONG Zhe , LIU Ben-Kang
2015, 31(9): 1655-1661  doi: 10.3866/PKU.WHXB201506291
[Abstract](695) [FullText HTML] [PDF 4175KB](257)
Abstract:

The dynamics of the first excited singlet electronic state (S1) of o-dichlorobenzene was investigated in real time by the femtosecond pump-probe method combined with time-of-flight mass spectroscopy and the photoelectron velocity mapping technique. The lifetime of the S1 vibrational ground state was determined experimentally to be (651 ± 10) ps, corresponding to the intersystem crossing process from the S1 state to the triplet state. Two decay channels were found in the S1 vibrationally excited mode 9a218a2. The fast process (lifetime constant (458 ± 12) fs) is because of the internal conversion from the S1 vibrationally excited mode to the highly vibrationally excited ground state (S0). The slow process (lifetime constant (90 ± 10) ps) is attributed to the intersystem crossing process from the S1 state to the triplet state (T1). Photoelectrons with long lifetime characteristics in the spectrum might be connected with the intersystem crossing process. Enhanced spinorbital coupling in the S1 highly vibrationally excited state accelerates the intersystem crossing process.

Ultrafast Dynamics of Benzene on the S2 State Investigated by Femtosecond Time-Resolved Photoelectron Spectroscopy
SHEN Huan , ZHANG Bing
2015, 31(9): 1662-1666  doi: 10.3866/PKU.WHXB201507061
[Abstract](646) [FullText HTML] [PDF 13242KB](199)
Abstract:

The ultrafast dynamics of benzene on the S2 state have been investigated by femtosecond time-resolved mass spectroscopy coupled with photoelectron imaging. The benzene molecule was excited to the S2 state by two 400 nm photons, and subsequently probed by one 267 nm photon. The timedependent ion yield of the parent ion consists of two components with different lifetimes. The first component at (90 ± 1) fs is because of internal conversion from the S2 state to the S1/S0 state. The second one, i.e., (5.0 ± 0.2) ps, is due to decay of the S1 state. The observed lifetime of the second component is shorter than previous results, indicating the existence of an additional decay process. With photoelectron spectra extracted from the time-resolved photoelectron imaging, this newly found deactivated process is assigned to intersystem crossing from the vibrational excited S1 state to the hot triplet state T3.

Theoretical Study of the Phosphorescence Spectrum of Tris(2-phenylpyridine)iridium Using the Displaced Harmonic Oscillator Model
WANG Xiao-Feng , ZUO Guo-Fang , LI Zhi-Feng , LI Hui-Xue
2015, 31(9): 1667-1676  doi: 10.3866/PKU.WHXB201507092
[Abstract](432) [FullText HTML] [PDF 4706KB](204)
Abstract:

We present a comprehensive investigation of the phosphorescence spectrum of Ir(ppy)3 (ppy = 2-phenylpyridine), which is greatly influenced by vibration of the complex. General formalism of the emission spectrum is derived using a thermal vibration correlation function formalism for the transition between two adiabatic electronic states in polyatomic molecules. Displacements and Duschinsky rotation of potential energy surfaces are included within the framework of a multidimensional harmonic oscillator model. This formalism gives a reliable description of the emission spectrum of Ir(ppy)3. The calculated results indicated that the 0→1 transition between the T1 state and the S0 state makes a large contribution to the emission spectrum, especially the vibrational modes below 1600 cm-1. The breathing vibration of the ligands and the CC and CN stretching vibrations of benzene and pyridine rings are the main reasons for the appearance of the shoulder peak in the spectrum. The Boltzmann distribution makes the intensities of both the main and the shoulder peaks decrease, and the peaks are close together. When coupled with first-principles density functional theory (DFT) calculations, the present approach appears to be an effective tool to obtain a quantitative description and detailed understanding of the spectra and photophysical processes of polyatomic molecules.

First-Principles Study of Effect of Strain on the Band Structure of ZnO Monolayer
WANG Zhi-Gang , ZENG Xiang-Ming , ZHANG Yang , HUANG Rao , WEN Yu-Hua
2015, 31(9): 1677-1682  doi: 10.3866/PKU.WHXB201506301
[Abstract](884) [FullText HTML] [PDF 2106KB](278)
Abstract:

The effect of strain on the band structure of the ZnO monolayer has been investigated by firstprinciples calculations based on density functional theory. The results reveal that the band structure of the ZnO monolayer presents different dependences on three types of strain. The band gap linearly and steeply varies under uniaxial zigzag compressive strain and armchair tensile strain, while it shows nonlinear dependence on the other types of strain. Therefore, uniaxial zigzag compressive strain and armchair tensile strain should be the most effective to tune the band gap. This work has significant implications for application of strain to tune the optical and catalytic properties of ZnO nanofilms.

Theoretical Study on the Structures and Magnetic Properties of Metal String Complexes [Ni3(L)4(NCS)2] (L = dpa-, mpta-, mdpa-, mppa-)
CHEN Rong , ZHOU Wo-Hua , WU Zi-Wen , XU Xuan , XU Zhi-Guang
2015, 31(9): 1683-1689  doi: 10.3866/PKU.WHXB201506031
[Abstract](595) [FullText HTML] [PDF 8803KB](290)
Abstract:

Density functional theory at the BP86 level and natural bond orbital theory were used to investigate the influence of bridging ligands on the Ni―Ni interactions and magnetic coupling properties of metal string complexes [Ni3(L)4(NCS)2] (L = 1: dpa- (dipyridylamine), 2: mpta- (4-methylpyridyl-thiazolylamine), 3: mdpa- (4-methyl-dipyridylamine), 4: mppa-(4-methylpyridyl-3H-pyrrolylamine)) with potential applications in molecular wires. The following conclusions can be drawn. (1) The ground states of the complexes are antiferromagnetic (AF) singlet states, which correspond to the quintet state (HS). The energy and structure of HS is similar to AF. There are three-center-four-electron σ bonds (σ2σnb1σ*1) along the Ni36+ chains. (2) The Ni―Ni and Ni―N distances are unaffected by methyl substituents on the pyridine ring of dpa- ligands. However, substitution of the 3H-pyrrole ring or thiazole ring by the pyridine ring in mdpa- lengthens the N1―N2 and Ni―Ni distances but shortens the Ni2―N2 distance. These effects of the thiazole ring are weaker than those of the 3H-pyrrole ring. Therefore, the strength of the Ni―Ni interaction is 13 > 2 > 4. (3) The predicted Jab values of 3 and 4 are -103 and -88 cm-1, respectively. The AF magnetic coupling effects of the complexes increase with increasing Ni―Ni interaction strength: the stronger the Ni―Ni interaction, the greater the direct magnetic coupling in the σ orbitals along the Ni36+ chains. In addition, the stronger the Ni2―N2 interaction, the larger the indirect magnetic coupling involving the bridging ligand. The direct magnetic coupling is stronger than the indirect magnetic coupling.

Quantum Chemistry Calculations of Ion Cluster Models of EMIM Ionic Liquids
LI Wei , ZHANG Jing , QI Chuan-Song
2015, 31(9): 1690-1698  doi: 10.3866/PKU.WHXB201507071
[Abstract](512) [FullText HTML] [PDF 3078KB](190)
Abstract:

Different types of 1-ethyl-3-methylimidazolium (EMIM) ionic liquid compounds, including halides, tetrafluoroborate, tribromide, diiodobromate, chloroaluminate, and bromine aluminate, have been investigated using quantum chemical calculations. First, geometry optimizations of the ion systems, including {[EMIM]Xn}(n-1)- (X = Cl, Br, I, BF4, AlCl4, AlBr4, Br3, IBrI, FHF; n = 2, 3) and {[EMIM]2Xn'}(n'-2)- (n' = 3, 4, 5), were performed using the density functional theory (DFT) B3LYP method together with the 6-311++G(d,p) (6-311G(d,p) for I) basis set. The vibrational spectra were also calculated for the EMIM halides and tetrafluoroborate. The obtained structures and vibrational spectra were consistent with experimental results. In addition, a linear correlation between melting point and interaction energy was obtained for the {[EMIM]2Xn'}(n'-2)- models of the compounds studied.

Mechanism and Regioselectivity of Addition Reactions of CH3OH to Germasilenes
ZENG Xiao-Lan , WANG Yan
2015, 31(9): 1699-1707  doi: 10.3866/PKU.WHXB201507202
[Abstract](775) [FullText HTML] [PDF 5918KB](165)
Abstract:

Density functional theory (DFT) calculations of the reaction mechanisms and potential energy surfaces for the addition reactions of CH3OH to several germasilenes were performed at the B3LYP/6-311++G(d,p) level. The effect of the polarity of the Si=Ge double bond in germasilenes on the regioselectivity of the addition reactions was also investigated. The results indicate that germasilenes can react with a monomer or dimer of CH3OH. All reactions start with formation of nucleophilic or electrophilic complexes. The dimer of CH3OH adds to H2Si=GeH2 kinetically more easily than the monomer. However, the situation is generally the opposite for substituted germasilenes. There is a kinetic disadvantage of substituting phenyl (Ph) or SiMe3 groups for H atoms in H2Si=GeH2 in the addition reactions, and the effect of the SiMe3 group is more remarkable than that of the Ph substituent. Both the polarity of the Si=Ge double bond and the strength of the Si-O (Ge-H) and Ge-O (Si-H) bonds affect the regioselectivity of the addition reactions.

Electrochemical Nucleation of Au on n-Type Semiconductor Silicon Electrode Surface
WU Xiao-Ying , YANG Li-Kun , YAN Hui , YANG Fang-Zu , TIAN Zhong-Qun , ZHOU Shao-Min
2015, 31(9): 1708-1714  doi: 10.3866/PKU.WHXB201507101
[Abstract](389) [FullText HTML] [PDF 4933KB](221)
Abstract:

Cyclic voltammetry and chronoamperometry have been used to investigate the mechanism of ld electrodeposition on the n-Si(111) electrode surface from a citrate bath, which had successfully applied to directly electroplate a dense ld film on the silicon surface. The results show that Au electrodeposition on the n-type silicon surface is an irreversible process, and the nucleation overpotential reaches 250 mV. According to Cottrell equation, the diffusion coefficient (D) is calculated to be (1.81 ± 0.14) × 10-4 cm2·s-1. The Scharifker-Hills (SH) model was used to analyze the experimental data. Agreement between the fitting curves and the theoretical curves confirms that the nucleation process of Au electrodeposition on the n-type silicon surface follows the progressive nucleation mechanism with three-dimensional growth under diffusion control. To further confirm the progressive nucleation mechanism, scanning electron microscopy (SEM) was used to observe the nucleation and growth of Au deposits at the initial stage of electrodeposition. The SEM results show that the morphology and density of the Au deposits are affected by the electrochemical deposition potential and time.

Performance of Nitrogen-Doped Carbon Nanocomposite with Entrapped Enzyme-Based Fuel Cell
HAYIERBIEK Kulisong , ZHAO Shu-Xian , YANG Yang , ZENG Han
2015, 31(9): 1715-1726  doi: 10.3866/PKU.WHXB201506231
[Abstract](830) [FullText HTML] [PDF 4095KB](269)
Abstract:

A nanocomposite composed of N-doped mesoporous carbon material (NDMPC) and carboxymethylated chitosan (CMCH) was fabricated by mechanical co-mixing and used as an enzyme matrix. A novel glucose/O2 enzymatic biofuel cell was fabricated with a Nafion ion-exchange membrane consisting of a laccase (Lac)-entrapped biocathode and glucose oxidase-incorporated bioanode. Enzyme electrodes were prepared by the dripping coat and air-dried method. The performance of the laccase-based electrode as a biocathode in a fuel cell and an oxygen electro-chemical sensor was characterized by cyclic voltammetry in combination with the rotating disk electrode technique, linear scanning voltammetry (LSV), and chronoamperometry. UV-Vis spectrometry and graphite furnace atomic absorption spectroscopy were used to investigate the configuration of enzyme molecules on the surface of electrode and to evaluate the enzyme loading of the matrix on the electrode interface. The results from the experiments showed that the laccasebased cathode displayed direct electron transfer between the active centre in laccase (T1) and the conductive matrix without any external electron mediators (apparent electron transfer rate 0.013 s-1). A minor overpotential for oxygen reduction (150 mV) was also observed. Through further comparison of the intra-molecule electron relay rate (1000 s-1), substrate turnover frequency (0.023 s-1), and previous enzyme-conductive matrix electron transfer rate, quantitative analysis showed that the latter was the rate-determining step in the whole catalytic cycle of the oxygen reduction reaction. This laccase-based electrode as an oxygen electrochemical sensor for detecting oxygen showed a low detection limit (0.04 μmol·dm-3), high sensitivity (12.1 μA·μmol-1·dm3), and affinity for oxygen (KM = 8.2 μmol·dm-3). This laccase-based cathode also had advantages such as excellent reproducibility, long-term usability, thermal stability, and pH endurance. The results for the fabricated biofuel cell showed an open circuit voltage of 0.38 V and a maximal energy output density of 19.2 μW·cm-2, maintaining greater than 60% of the initial value even after continuous work for 3 weeks under optimal conditions.

Synthesis of PDDA-Decorating MWCNTs Supported Pt Electrocatalysts and Catalytic Properties for Oxygen Reduction Reaction in Alkaline Medium
ZHANG Jie , DOU Mei-Ling , WANG Feng , LIU Jing-Jun , LI Zhi-Lin , JI Jing , SONG Ye
2015, 31(9): 1727-1732  doi: 10.3866/PKU.WHXB201507161
[Abstract](620) [FullText HTML] [PDF 6224KB](226)
Abstract:

Multi-walled carbon nanotubes (MWCNTs) were modified with the long-chain polymer poly (diallyldimethylammonium chloride) (PDDA) and used as support for Pt nanoparticles (NPs). Pt/PDDA/ MWCNTs electrocatalysts were prepared by electrostatic adsorption of Pt NPs on the PDDA/MWCNTs support. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) characterization revealed that the Pt NPs were well dispersed on the PDDA/MWCNTs support, with an average diameter of ~3.6 nm. Thermo gravimetric analysis showed that the loading of Pt was 36%(w). Rotating disk electrode (RDE) measurements showed that the Pt/PDDA/MWCNTs catalyst had excellent electrocatalytic activity for oxygen reduction in alkaline medium. Compared with commercial Pt/C (40%(w)), the Pt/PDDA/MWCNTs catalyst exhibited a positive shift of 30 mV for the oxygen reduction onset and half-wave potential. Kinetics study further confirmed the significantly enhanced oxygen reduction activity of the Pt/PDDA/MWCNTs catalyst in the alkaline medium.

Orientational Transitions of Liquid Crystal Driven by Hydrogen-Bond Interaction at the Liquid Crystal-Aqueous Interface
LIAO Zhi-Jian , QIN Zhen-Li , DU Si-Nan , LI Si-Yu , CHEN Guan-Hou , ZUO Fang , LUO Jian-Bin
2015, 31(9): 1733-1740  doi: 10.3866/PKU.WHXB201508101
[Abstract](576) [FullText HTML] [PDF 22140KB](192)
Abstract:

In this paper, an orientational anchoring transition of the thermotropic nematic liquid crystal (LC) (4-cyano-4'-pentylbiphenyl (5CB)) driven by hydrogen-bond (HB) interaction at the LC-aqueous interface is presented. After a 5CB film is introduced onto an aqueous solution of phenols such as nitrophenol, the alignment of 5CB changes from planar to homeotropic, which is attributed to HB interaction between 5CB and phenols at the LC-aqueous interface. On the other hand, the interaction of pnitrophenol or m-nitrophenol with bovine serum albumin (BSA) is imaged by the LC sensor. Overall, the results provide new insight into interfacial phenomena occurring at the LC-aqueous interface, and hold the potential for biological and chemical sensing techniques based on HB interaction.

Formation Mechanism of the H-terminated Diamond Surface
LIU Jin-Long , LIU Sheng , GUO Jian-Chao , HUA Chen-Yi , CHEN Liang-Xian , WEI Jun-Jun , HEI Li-Fu , WANG Jing-Jing , FENG Zhi-Hong , LIU Qing , LI Cheng-Ming
2015, 31(9): 1741-1746  doi: 10.3866/PKU.WHXB201508031
[Abstract](725) [FullText HTML] [PDF 2170KB](174)
Abstract:

Microwave hydrogen plasma was used to introduce hydrogen termination on the diamond surface. Optical emission spectroscopy (OES) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) were used to characterize the active radicals in the plasma and the concentration of H-termination on the diamond surface, respectively. Thermal hydrogenation treatment carried out by hot filament heat in a hydrogen atmosphere was also proposed for incorporation of H-termination on the diamond surface. The results showed that the CH radical content in the microwave plasma and the H-termination concentration on the diamond surface after microwave plasma treatment were both facilitated by increasing the substrate temperature, plasma density, and input power. Interestingly, thermal hydrogenation treatment can produce Htermination on the diamond surface compared with to a similar extent to microwave plasma treatment. These observations show that the crucial factor for forming the H-terminated diamond surface is the surface chemical reaction controlled by temperature, rather than the plasma etching effect. When the temperature is above 500 ℃, C=O bonds on the O-terminated diamond surface decompose to CO and leave dangling bonds, which then connect with atomic or molecular hydrogen.

Effect of the Carbon Precursor on the Design of Perfluorosulfonic Acid Functionalized Carbon Catalysts
LI Cui-Can , ZHANG Meng-Xiao , HUA Wei-Ming , YUE Ying-Hong , GAO Zi
2015, 31(9): 1747-1752  doi: 10.3866/PKU.WHXB201506012
[Abstract](383) [FullText HTML] [PDF 5795KB](244)
Abstract:

Perfluorosulfonic acid functionalized carbon-based solid acid catalysts were prepared by liquid deposition of perfluorosulfonic acid-polytetrafluoroethylene (PTFE) copolymer using carbon nanotubes, mesoporous carbon molecular sieves, and nitrogen-doped mesoporous carbon as precursors. The obtained catalysts were characterized by N2 adsorption, thermogravimetric analysis (TG), transmission electron microscope (TEM), Fourier transform Infrared (FTIR) spectrometer, and potentiometric titration. Their catalytic behavior in the Friedel-Crafts (F-C) alkylation of anisole was also investigated. It was found that the surface area of the precursor and its interaction with perfluorosulfonic acid play important roles in the preparation of highly active catalysts. The highest activity as well as the best stability was observed over perfluorosulfonic acid functionalized nitrogen-doped mesoporous carbon.

Performance of CO Oxidation over Highly Dispersed ld Catalyst on TiOx/SiO2 Composite Supports
LI Xiao-Kun , MA Dong-Dong , ZHENG Yan-Ping , ZHANG Hong , DING Ding , CHEN Ming-Shu , WAN Hui-Lin
2015, 31(9): 1753-1760  doi: 10.3866/PKU.WHXB201507091
[Abstract](547) [FullText HTML] [PDF 6075KB](250)
Abstract:

Supports have a significant effect on the dispersion and stability of Au nanoparticles because of the support-metal interaction. In the present work, TiOx/SiO2 composite supports were prepared by the surface sol-gel (SSG) method to enhance the binding strength between the metal and the support. The samples were characterized by low-energy ion scattering (LEIS) spectroscopy, X-ray photoelectron spectroscopy (XPS), Xray diffraction (XRD), transmission electron microscopy (TEM), and N2 physisorption (BET). The results showed that the TiOx species in TiOx/SiO2 were highly dispersed on SiO2 with the formation of Ti―O―Si linkages. The catalytic activity and stability for CO oxidation on Au/TiOx/SiO2 were significantly enhanced, because of the better dispersion of Au nanoparticles compared with Au/TiO2.

Effect of Cu Loading on the Structure and Catalytic Performance of the LNT Catalyst CuO-K2CO3/TiO2
FAN Feng-Qi , MENG Ming , TIAN Ye , ZHENG Li-Rong , ZHANG Jing , HU Tian-Dou
2015, 31(9): 1761-1770  doi: 10.3866/PKU.WHXB201507291
[Abstract](592) [FullText HTML] [PDF 10448KB](183)
Abstract:

A series of non-platinic lean NOx trap (LNT) CuO-K2CO3/TiO2 catalysts with different Cu loadings were prepared by sequential impregnation, and they showed relatively od performance for lean NOx storage and reduction. The catalyst containing 8% (w) CuO showed not only the largest NOx storage capacity of 1.559 mmol·g-1 under lean conditions, but also the highest NOx reduction percentage of 99% in cyclic lean/rich atmospheres. Additionally, zero selectivity of NOx to N2O was achieved over this catalyst during NOx reduction. Multiple techniques, including X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), temperature-programmed desorption of CO2 (CO2-TPD), extended X-ray absorption fine structure (EXAFS), temperature-programmed reduction of H2 (H2-TPR), and in-situ diffuse reflectance Fourier-transform infrared spectroscopy (DRIFTS), were used for catalyst characterization. The results indicate that highly dispersed CuO is the main active phase for oxidation of NO to NO2 and reduction of NOx to N2. The strong interaction between K2CO3 and CuO was clearly revealed, which favors NOx adsorption and storage. The appearance of negative bands at around 1436 and 1563 cm-1, corresponding to CO2 asymmetric stretching in bicarbonates and -C=O stretching in bidentate carbonates, showed the involvement of carbonates in NOx storage. After using the catalysts for 15 cycles of NOx storage and reduction in alternative lean/rich atmospheres, the CuO species in the catalysts showed little change, indicating high catalytic stability. Based on the results of in-situ DRIFTS and the other characterizations, a model describing the NOx storage processes and the distribution of CuO and K2CO3 species is proposed.

Effects of Zr Addition on the Performance of the Pd-Pt/Al2O3 Catalyst for Lean-Burn Natural Gas Vehicle Exhaust Purification
HU Wei , WANG Yun , SHANG Hong-Yan , XU Hai-Di , ZHONG Lin , CHEN Jian-Jun , NG Mao-Chu , CHEN Yao-Qiang
2015, 31(9): 1771-1779  doi: 10.3866/PKU.WHXB201507141
[Abstract](593) [FullText HTML] [PDF 4530KB](197)
Abstract:

The catalytic activity, hydrothermal aging resistance, and sulfur tolerance of a Pd-Pt-based methane oxidation catalyst were evaluated in a fixed fluidized bed reactor containing simulated lean-burn natural gas vehicle exhaust gases. Zirconium-doped Pd-Pt/Al2O3 (Pd-Pt/ZrxAl(1-x)O(3+x)/2) was found to significantly improve the catalytic activity, hydrothermal aging resistance, and sulfur tolerance. Zr-modified alumina supports were prepared by co-precipitation with molar ratios of Zr to Al of 0 : 1, 0.25 : 0.75, 0.5 : 0.5, 0.75 : 0.25, and 1 : 0. The Pd-Pt bimetallic catalysts containing 1.5% (w, mass fraction) Pd and 0.3% (w) Pt supported on the above-modified composite supports were prepared by the co-impregnating method. The catalysts were characterized by N2 adsorption/desorption, X-ray diffraction(XRD), H2 temperatureprogrammed reduction (H2-TPR), O2 temperature-programmed desorption, and X-ray photoelectron spectroscopy (XPS). The results show that the crystallinity of the samples, dispersion of the active component, number of Pd2+ species, and electron density around Pd2+ species increase after addition of ZrO2 to Al2O3 supports. Compared with the activity results of Pd-Pt/Al2O3 and Pd-Pt/ZrO2 catalysts after different pretreatment conditions, the performance of the catalyst is greatly enhanced by adding ZrO2 in the Al2O3 supports, and Pd-Pt/Zr0.5Al0.5O1.75 shows the best catalytic activity, strongest hydrothermal aging resistance, and highest sulfur tolerance among the investigated catalysts.

MgF2 Modified Alq3 Nanocomposite: Synthesis and Improvement of Anti-Aging Performance of OLED
LI Wan-Li , LIU Xiao-Yun , MIAO Yan-Qin , YANG Jun-Li , WU Cong-Ling , LI Yuan-Hao , GUO Kun-Peng , WANG Hua , XU Bing-She
2015, 31(9): 1780-1786  doi: 10.3866/PKU.WHXB201507151
[Abstract](403) [FullText HTML] [PDF 9019KB](172)
Abstract:

From the viewpoint of practical application, enhancing the stability and lifetime of organic lightemitting diodes (OLED) is a al of research. A MgF2 modified tris(8-hydroxyquinoline)-aluminum (Alq3) hybrid superstructure was realized by collosol infiltration of a Mg(CF3COO)2-x(CH3COO)x precursor onto Alq3. Alq3 was well-dispersed in a large amount of Mg(CF3COO)2-x(CH3COO)x gel precursor solution, and after concentration a well-dispersed composite paste was produced. By heating the paste to 300 ℃, Alq3 transformed to the superstructured ε-phase, and MgF2 homogeneously incorporated because of od gel precursor infiltration and in situ deposition. The MgF2-modified Alq3 nanocomposite with superstructure has the same electroluminescence (EL) spectrum as Alq3, with a dramatic improvement of the anti-aging performance of the OLED compared with Alq3 because of the uniform assembly and well-defined structure. The effect of the amount of Mg(CH3COO)2 reactant on the OLED device anti-aging performance was investigated. The results showed that for the Alq3-MgF2 nanocomposite with 5% (molar fraction) of the Mg(CH3COO)2 reactant, the luminance remained at the initial state of 93.5% after aging for 72 h in air. However, the luminance of the Alq3-based OLED almost disappeared after aging for 24 h under the same conditions. This work on inorganic material modified luminescent materials makes significant progress towards stable OLED.

Fluorescence Quenching of Eosin Y by Tyrosine
WANG Jing-Dong , LI Shuang , Lü Rong , YU An-Chi
2015, 31(9): 1787-1794  doi: 10.3866/PKU.WHXB201507241
[Abstract](798) [FullText HTML] [PDF 1069KB](219)
Abstract:

Quenching of a fluorescent probe by amino acid residues can provide valuable information about the structural and conformational dynamics of a biopolymer. Herein, we systematically investigated the ultrafast fluorescence quenching dynamics of Eosin Y in the presence of N-acetyl-tyrosine (AcTyr) in H2O and D2O solutions using both femtosecond transient absorption and time-correlated single-photon counting experiments. We found that the quenching of the fluorescence of Eosin Y by AcTyr in aqueous solution is mainly because of the formation of a ground-state complex between Eosin Y and AcTyr. We also found that the lifetime of the ground-state complex formed between Eosin Y and AcTyr showed a clear kinetic isotope effect, indicating that the quenching of the fluorescence of Eosin Y by AcTyr in aqueous solution is via a proton-coupled electron transfer process.

Predicting and Virtually Screening Breast Cancer Targeting Protein HEC1 Inhibitors by Molecular Descriptors and Machine Learning Methods
HE Bing , LUO Yong , LI Bing-Ke , XUE Ying , YU Luo-Ting , QIU Xiao-Long , YANG Teng-Kuei
2015, 31(9): 1795-1802  doi: 10.3866/PKU.WHXB201507301
[Abstract](769) [FullText HTML] [PDF 652KB](203)
Abstract:

Highly expressed in cancer 1 (HEC1) is a conserved mitotic regulator that is critical for spindle checkpoint control, kinetochore functionality, and cell survival. Overexpression of HEC1 has been detected in a variety of human cancers, and it is linked to poor prognosis of primary breast cancers. Thus, it is important to screen novel inhibitors with high affinity for HEC1. Machine learning (ML) methods were exhibiting od pharmacodynamics, and toxicity. In this work, two ML methods, support vector machines (SVMs) and random forests (RFs), were used to develop a classification method for searching inhibitors and non-inhibitors of HEC1 from the chemical library of structural diversity by screening characteristics of molecular descriptors. Both ML methods achieved promising prediction accuracies, and the RF model showed better performance. We performed virtual screening of HEC1 inhibitors by the RF model from an in-house database to screen potential HEC1 inhibitors. Two novel potential candidates were found. In vitro experiments of the two compounds showed that both had a certain degree of antitumor activity for the MDA-MB-468 and MDA-MB-231 breast cancer cell lines. Our study shows that ML methods are promising to design and virtually screen inhibitors of HEC1.

F1-ATPase Stabilizes and Positions Adenosine Triphosphate Revealed by Molecular Dynamics Simulations
WU Shao-Gui , GAO Xiao-Tong , LI Quan , LIAO Jie , XU Cheng-Gang
2015, 31(9): 1803-1809  doi: 10.3866/PKU.WHXB201508062
[Abstract](770) [FullText HTML] [PDF 3165KB](213)
Abstract:

F1-ATPase makes extensive interactions with ATP through forming a network of interactions around ATP. These interactions create a steady environment for ATP synthesis/hydrolysis. Thus understanding these interactions between ATP and F1-ATPase is essential for understanding ATP synthesis/hydrolysis mechanism. We performed all-atom molecular dynamics (MD) simulations to elucidate these interactions and attempted to identify key residues which play important roles in stabilizing and positioning ATP. By examining the non-bonded energies between ATP and residues of βTP subunit in F1-ATPase, it is found that residues 158-164, R189, Y345 have significant interactions with ATP. The loop segment (residues 158-164) and R189 surround ATP by a half and they interact with β and γ phosphates through forming a network of hydrogen bonds to constraint the motion of ATP triphosphate. The interaction network seals off the conformation of the catalytic site, creating a steady environment for ATP synthesis/hydrolysis. Additionally, ATP base is positioned by the π-π stacking interaction from Y345. However, ATP base can slide and move paralleling to the aromatic group of Y345. It is deduced that this motion may facilitate ATP hydrolysis.

Simulation of the Immobilization of Pu in the Gd2Zr2O7 Matrix by Investigating the Thermophysical Properties of (Gd1-xCex)2Zr2O7+x
XIA Xiang-Lai , LI Lin-Yan , GUO Fang , SU Wei , LIU Yan , CHEN Xiao-Mou , PAN She-Qi
2015, 31(9): 1810-1814  doi: 10.3866/PKU.WHXB201507203
[Abstract](728) [FullText HTML] [PDF 1024KB](216)
Abstract:

Polycrystalline samples of (Gd1-xCex)2Zr2O7+x (0 ≤ x ≤ 0.7) were synthesized by solid-state reaction using NaF as a flux at 1000 ℃ to simulate Pu-immobilization in the Gd2Zr2O7 matrix. Phase transformation and variation of the thermal expansion coefficients (TECs) and thermal conductivities (TCs) of the samples with temperature and composition were investigated. Powder X-ray diffraction (XRD) patterns show that pure Gd2Zr2O7 has a weakly ordered pyrochlore structure, whereas Ce-containing samples (i.e., the Pu-simulated solidified samples) exhibit a defect fluorite structure even if x is as low as 0.1. When x reaches 0.7, the XRD peaks of these samples widen. In the Ce 3d X-ray photoelectron spectrum (XPS) of (Gd1-xCex)2Zr2O7+x there are six peaks located at binding energies of 881.7, 888.1, 897.8, 900.4, 907.1, and 916.1 eV, which are almost the same as the peaks of CeO2. The Ce 3d XPS reveals that the Ce species in (Gd1-xCex)2Zr2O7+x are tetravalent. The TECs of (Gd1-xCex)2Zr2O7+x (0 ≤ x ≤ 0.7) generally increase with increasing temperature. At the same temperature, the TECs and TCs exhibit the same variation trend with the composition of the simulated solidified forms: they decrease from x = 0 to 0.1 and then linearly increase from x = 0.1 to 0.7.

Fast Adsorption Removal of Con Red on Hierarchically Porous γ-Al2O3 Hollow Microspheres Prepared by Microwave-Assisted Hydrothermal Method
NIE Long-Hui , TAN Qiao , ZHU Wei , WEI Qi , LIN Zhi-Kui
2015, 31(9): 1815-1822  doi: 10.3866/PKU.WHXB201507201
[Abstract](730) [FullText HTML] [PDF 11948KB](212)
Abstract:

Hierarchical nanostructured γ-Al2O3 hollow microspheres were synthesized from KAl(SO4)2 and urea precursors by the microwave-assisted hydrothermal (MAH) method at 180 ℃ for 20 min followed by calcination at 600 ℃ for 2 h. The as-prepared sample was used to remove the organic dye Con red (CR) from aqueous solution. The results showed that the obtained γ-Al2O3 hollow microspheres are about 0.8-1.0 μm in diameter with a shell thickness of approximately 200 nm. The γ-Al2O3 hollow microspheres have a high surface area of 243 m2·g-1 and a hierarchical meso-macroporous structure, which is beneficial for mass transfer in liquid processes. Therefore, the prepared γ-Al2O3 hollow microspheres exhibit faster adsorption and enhanced adsorption performance for CR than particles prepared by the hydrothermal method and commercial γ-Al2O3. The adsorption kinetic data follow the pseudo-second-order equation and the equilibrium data fit well to the Langmuir model. The maximum adsorption capacity (qmax) of the obtained γ-Al2O3 hollow microspheres calculated by the Langmuir model is up to 515.4 mg·g-1 at 25 ℃. The γ-Al2O3 hollow microspheres prepared by the microwave-assisted hydrotherm method show promise as an adsorbent for environmental applications due to their hierarchical porous structure, high surface area, large pore volume, and adsorption capacity.

Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net