2015 Volume 31 Issue 8
In recent years, TiO2 has been widely investigated as a promising anode material for lithium ion batteries because of its low volume change during the charge/discharge process, environmental benignity, and high safety. However, it suffers from poor electron transport, slow ion diffusion, and low theoretical capacity (335 mAh·g-1), which limit its practical application. In this paper, we review the development history and latest progress of TiO2 nanotubes (TNTs) as anode materials. Three typical synthesis methods of TNTs, namely, hydrothermal method, anodic oxidation, and template method, are analyzed in detail. We explain the formation mechanism, compare the advantages and disadvantages of each method, and identify the factors influencing the formation of TNTs. We also carefully analyze the morphology and crystallography of TNTs and describe how they influence the electrochemical performance. It is pointed out that c-axis oriented, arrayed, unsealed TNTs with a wall thickness less than 5 nm show better electrochemical performance. Various approaches for improving the electrochemical performance of TNTs are summarized, including preparation of threedimensional (3D) structured electrodes, doping, coating, and synthesis of composites. Among these approaches, compositing with materials that have high capacity and high conductivity has proven to be effective, convenient, and controllable. The achievements and the problems associated with each approach are summarized, and the possible research directions and prospects of TNTs as anode materials for Li-ion batteries in the future are discussed.
Room temperature ionic liquids (RTILs), which have several special properties such as negligible vapor pressure, high thermal and chemical stability, od molecular structure and property designability, have received a great deal of attention, and have emerged as potential environmentally benign solvents. Therefore, a deep understanding of the solvent properties of RTILs, especially the microenvironment properties, is crucial to design new RTILs and extend their applications. The structural heterogeneities and local viscosities of the microenvironments of the ionic liquid [bmim][PF6] and the ether-functionalized ionic liquid [moemim][PF6] were investigated by the rotational dynamics of coumarin 153 (C153) and the excimer-to-monomer fluorescence emission intensity ratio (IE/IM) of 1,3-bis(1-pyrenyl)propane (BPP). The rotational dynamics of C153 shows that there are incompact and compact domains within the heterogeneous structure of [bmim][PF6], resulting in fast and slow components of C153 rotational dynamics. The rotational dynamics of C153 shows that there is mainly one type of microenvironment in [moemim][PF6]. The C153 rotation time constants show that the microviscosity of [moemim][PF6] is lower than that of [bmim][PF6], and this result is confirmed by steady-state fluorescence measurement with the BPP microviscosity probe. The side chain of [moemim][PF6] is more polar and more flexible than that of [bmim][PF6], and the oxygen of the ether group could act as a hydrogen bond acceptor and interact with the cations of the ionic liquid, which possibly reduces the electrostatic attraction between the cations and anions in the ionic liquid and leads to the lower structural heterogeneity and microviscosity of [moemim][PF6].
The dynamic behavior of the ammonium ion is closely related to the biological and chemical processes of life. A fast rotation of NH4 in aqueous solution has been observed in previous experiments, which is unexpected from hydrodynamic theories because of the multiple strong hydrogen bonds (HBs) between ammonium ion and water. The mechanism behind this rotation is still not well understood. The simulations in this work show that a sudden and large-magnitude angular jump rotation occurs during the hydrogen bond exchange processes of the ammonium ion like water. The rotation of the ammonium ion can be approximately described with the extended jump model, and can be decomposed into two independent contributions: the jump rotation and the diffusive rotation of the HB frame. The rotational mobility of the ammonium ion is determined by fast jump rotation compared with the slow diffusive rotation. In addition, the contribution of the jump rotation increases with increasing NH4 concentration. Compared with water, NH4 prefers to exchange its HB between two water molecules without forming a HB each other.
Four deep eutectic solvents (DESs) were prepared from tetrabutylammonium chloride: tetrabutylammonium chloride:propionic acid [TBAC:2PA], tetrabutylammonium chloride:ethylene glycol [TBAC:2EG], tetrabutylammonium chloride:polyethylene glycol [TBAC:2PEG], and tetrabutylammonium chloride:phenylacetic acid [TBAC:2PAA]. The density, electrical conductivity, dynamic viscosity, and refractive index of the samples were measured at 288.15-338.15 K under atmospheric pressure. The influence of the temperature on the density, electrical conductivity, dynamic viscosity, and refractive index are discussed. The thermal expansion coefficient, molecular volume, standard molar entropy, and lattice energy were determined from the measured values using empirical equations. The temperature dependences on the electrical conductivity and dynamic viscosity of the DESs were fitted by the Vogel- Fulcher-Tamman (VFT) equation. The Arrhenius equation is also discussed for the electrical conductivity and dynamic viscosity. The above study will be of great significance for the industrial and engineering applications of DESs.
The transition voltage of copper-vacuum-copper tunneling junctions with atomic protrusions on the electrode surface was investigated using the non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that the transition voltages of Cu-vacuum-Cu junctions with atomically sharp electrodes are mainly determined by the local density of state (LDOS) of the 4p atomic orbitals of the protrusion, and are thus sensitive to the electrode orientation and the variation of the atomic configurations of surface protrusions. For Cu-vacuum-Cu junctions with (111)-oriented electrodes, the transition voltages were calculated to be about 1.40 and 2.40 V when the atomic protrusions were chosen to be one Cu adatom or a copper cluster with four atoms arranged in a pyramid configuration, respectively. The transition voltages of Cu-vacuum-Cu junctions with (100)-oriented electrodes were more different. When the atomic protrusion on the Cu(100) surface was a copper cluster with five atoms arranged in a pyramid configuration, the transition voltage was 1.70 V. In contrast, no transition voltage was observed for Cuvacuum- Cu junctions with one Cu adatom attached to the Cu(100) electrode surface even when the bias exceeded 1.80 V, which is caused by the LDOS of the 4p atomic orbitals of the Cu adatom on the Cu(100) surface being too extended. These results demonstrate the advantages of transition voltage spectroscopy as a tool for analyzing the electronic transport properties of metal-vacuum-metal tunneling junctions.
Fullerene-derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) plays an important role in terms of electron transport in polymer solar cells. The electronic structure of PCBM is of much importance to investigate. In this study, the near-edge X-ray absorption fine structure spectroscopy and unoccupied orbitals of PCBM were researched with density functional theory. By comparing the calculated sum spectra of nonequivalent carbon atoms, we assigned the main resonances of PCBM. The origin of the shoulder in the right side of the first π* resonance was analyzed, and the results showed that this absorption peak was mainly contributed by the transitions to higher unoccupied orbitals of the unmodified carbons in the C60 cage.
Graphene has potential applications in many fields. In particular, two-dimensional graphene nanochannels assembled from graphene sheets can be used for filtration and separation. In this work, molecular dynamics simulations were performed to investigate the microscopic structural and dynamical properties of water molecules confined in pristine and hydroxyl-modified graphene slit pores with widths of 0.6-1.5 nm. The simulation results indicate that water molecules have layered structure distributions within the graphene nanoscale channels. The special ordered ring structure can be formed for water confined in the subnanometer pores (0.6-0.8 nm). Graphene surfaces are able to induce distinctive molecular interfacial orientations of water molecules. In the graphene slits, the diffusion of water molecules was slower than that in bulk water, and the hydroxyl-modified graphene pores could lead to more reduced water diffusion ability. For the hydroxyl-modified graphene pores, water molecules spontaneously permeated into the 0.6 nm slit pore. According to the simulation results, the dynamic behavior of confined water is associated with the ordered water structures confined within the graphene-based nanochannels. These simulation results will be helpful in understanding the penetration mechanism of water molecules through graphene nanochannels, and will provide a guide for designing graphene-based membrane structures.
Surface adsorption of a solution is still a challenging problem in the thermodynamics of surfaces. In this work, a new thermodynamic state function is defined. The equilibrium condition of surface adsorption is that the differential of this state function is equal to zero. Based on this condition, we derived a new equation to describe surface adsorption at equilibrium. No hypothetical dividing surface is needed in this derivation. The new equation is quite different from the Gibbs adsorption equation. We also performed molecular dynamic simulations of aqueous sodium chloride solutions. The simulated results are in od agreement with our theoretical predictions.
Nine new D-π-A metal-free sensitizers INI1-INI9 with indolizino [3,4,5-ab] isoindole (INI) as electronic donor were investigated using the density functional theory (DFT) and time-dependent DFT calculations. Compared to D5 and D9, some major factors affecting the performance of the cell, including light harvesting, electron injection, dye regeneration, and charge recombination are taken into consideration. Calculations show that these novel INI-based sensitizers have an absorption maximum at 440-500 nm when π conjugated bridge attached at different position of aromatic ring and an excellent charge separation characters. INI2 shows better performance than that of D9 due to the theoretical maximum short-circuit current density of 13.26 mA·cm-2. Fortunately, condensed Fukui function calculation suggested that the INI2 be easiest to obtain due to a largest nucleophilic index at 2 position of INI aromatic ring. Based on the calculations of dyes adsorption on TiO2 cluster, indirect electron injection may be the main path from dye to TiO2 for INI2 and D5. Our calculations indicate that the INI dyes will be promising candidates for fabrication of the high performance dye-sensitized solar cells.
Li3V2(PO4)3 and its triple-cation-doped counterpart Li2.85Na0.15V1.9Al0.1(PO4)2.9F0.1 were prepared by a conventional sol-gel method. The effect of Na-Al-F co-doping on the physicochemical properties, especially the electrochemical performance of Li3V2(PO4)3, were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), Raman spectroscopy, scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), galvanostatic charge/discharge, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). It was found that combined with surface coating from residual carbon, this triple-cation co-doping stabilizes the crystalline structure of Li3V2(PO4)3, suppresses secondary particle agglomeration, and improves the electric conductivity. Moreover, reversible deinsertion/insertion of the third lithium ion at deeper charge/discharge is enabled by such doping. As a consequence, the practical electrochemical performance of Li3V2(PO4)3 is significantly improved. The specific capacity of the doped material at a low rate of 1/9C is 172 mAh·g-1 and it maintains 115 mAh·g-1 at a rate of 14C, while the specific capacities of the undoped sample at 1/9C and 6C are only 141 and 98 mAh·g-1, respectively. After 300 cycles at 1C rate, the doped material has a capacity of 118 mAh·g-1, which is 32.6% higher than that of the undoped counterpart. It is also noteworthy that the multiplateau discharge curve of Li3V2(PO4)3 transforms to a slope-like curve, indicating the possibility of a different lithium intercalation mechanism after this co-doping.
Diamond-shaped carbon-coated CoCO3 (CoCO3/C) particles were prepared by a simple hydrothermal method, and carbon coating was realized using glucose as the carbon source. This study focuses on the electrochemical performance of CoCO3/C as an anode material. Its surface morphology and crystal lattice structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The content and structure of the carbon coating layer were further investigated by the thermogravimetry-differential thermal analysis (TG-DTA) technique and Raman spectroscopy. The pore size distribution was characterized using the Barrett-Joyner-Halenda (BJH) method. The results show that the carbon coating process creates not only a layer of amorphous carbon on the surface of CoCO3, but also a porous structure with pore size of ~30 nm. The amorphous carbon layer enhances the structural stability during the charging and discharging process, and the porous structure facilitates the movement of ions in the electrolyte, and thus improves its electrochemical performance. When the cycling performance was tested for 500 cycles, this CoCO3/C material maintained a capacity of 539 mAh·g-1 at 0.90C (1.00C = mAh·g-1), showing its excellent cycling capacity. When the current rate was increased to 3.00C, the capacity was 130 mAh·g-1. When the current rate was returned to 0.15C, its capacity was 770 mAh·g-1, demonstrating the great rate performance and stability of CoCO3/C.
The cuboid layered 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2 cobalt-free lithium-rich solid-solution cathode material was synthesized by a facile quick co-precipitation method. The prepared material was characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma (ICP) spectroscopy, field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical measurements. It was found that the as-prepared material has a typical hexa nal α-NaFeO2 layered structure with R3m space group, and the chemical composition of this material is similar to the corresponding target material. SEM and TEM images reveal that the cuboid structures are assembled from nanoparticles with particle sizes of 40-200 nm. A possible formation mechanism of this cuboid aggregation is proposed. The electrochemical tests (in the voltage range 2.0-4.8 V vs Li/Li+) indicate that the as-prepared material exhibits excellent rate capability. It delivers approximately 243 and 143 mAh·g-1 corresponding to 0.1C and 10C, respectively. Moreover, the asprepared material has od cycling stability even after high rate measurement, delivering a high capacity retention of 90.7% after 72 cycles at 0.5C. This co-precipitation approach, which has facile operation processes and od results, is a economic technique that could facilitate the application of Li-rich cathode on a large scale.
By introducing a new method of solution preparation, systems of equimolar mixing cationic/anionic surfactants with dissymmetric lengths of alkyl tails were investigated using light scattering, rheology, and freezing-fracture transmission electron microscopy (FF-TEM) measurements, in which the cation was docosyltrimethylammobium bromide (C22TABr) and the anions were sodium alkylcarboxylates (Cn-1COONa, n = 4, 6, 8, 10, 12, 14, 16). The results showed that spherical micelles were favored when the cationic/anionic surfactants had highly dissymmetric length tails (C22/n4). With decreasing dissymmetry of the alkyl tail lengths, the aggregates transformed to rod-like micelles, worm-like micelles, and finally vesicles. In the vesicle-formed cases, the size of the aggregate considerably increased with decreasing dissymmetry of the alkyl tail lengths. By analyzing the mechanism of aggregation, the geometry of the cation/anion pair is thought to determine the morphology and the transition of aggregates.
Carbon nanotubes (CNTs) pretreated with concentrated HNO3 and tetrabutyl titanate were used as raw materials to prepare CNTs-TiO2 composite supports by the sol-gel method. Vanadium was then dipped into the CNTs-TiO2 composite support to synthesize the V2O5/CNTs-TiO2 catalyst. The influence of calcination temperature on the active species of the catalyst and the catalytic oxidation performance for degradation of hexachlorobenzene (HCB) were investigated. The synthesized catalysts were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and ultraviolet-visible (UV-Vis) spectroscopy. The surface chemical properties were analyzed by X-ray photoelectron spectroscopy (XPS). The results indicated that the modified carbon nanotubes have high purity and graphitization degree. The effect of calcination temperature on the active components and the activity of the catalyst were investigated. The results showed that calcination at 450 ℃ favored the dispersion of the active species of the catalyst and the formation of catalytic oxidation valences of V5+ and Ti4+ in the V2O5/CNTs-TiO2 catalyst. The presence of V5+ and Ti4+ increased the concentration of the surface oxygen of the catalyst, resulting in a higher catalytic activity because of promotion of the electron mobility and oxygen transfer: 94.78% of HCB can be conversed with a loading of 0.2 g of the catalyst in an atmosphere of N2 (80%) + O2 (20%) at 250 ℃. The conversion of HCB remained above 90% during a 24 h batch test, which showed a stable catalytic performance.
The core-shell type poly(styrene-N-isopropylacrylamide)/poly(N-isopropylacrylamide-co-3-methacryloxypropyltrimethoxysilane) (P(St-NIPAM)/P(NIPAM-co-MPTMS)) composite microgels with thermosensitivity were synthesized by two-step polymerization methods. Using P(St-NIPAM)/P(NIPAM-co-MPTMS) composite microgels modified by (3-mercaptopropyl) trimethoxysilane (MPS) as support material, Ag nanoparticles (AgNPs) were in-situ controllably synthesized using ethanol as a reducing regent. The structure, composition and properties of the prepared P(St-NIPAM)/P(NIPAM-co-MPTMS)-(SH)Ag composite materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fouriertransform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and UV-visible spectroscopy (UV-Vis). Additionally, the catalytic activity of the composite microgels was investigated using the reduction of 4-nitrophenol (4-NP) by NaBH4 as a model reaction. The results showed that the dispersity of the in situ formed AgNPs was greatly improved because of the confining effect of the organic-inorganic microgel network with mercapto groups. Although the thermosensitivity of the composite microgels decreased because of the PNIPAM segments separated by the inorganic networks formed by MPTMS, the composite microgels still showed excellent catalytic performance and thermosensitivity in modulating the catalytic activity of AgNPs. These findings are related to the following aspects. The separated PNIPAM segments are favorable for mass transfer, and the networks with mercapto groups allow control of the size and local distribution of the in situ formed AgNPs. The present results are significant for construction of functional nanoscale metal catalytic materials.
NiMo/TiO2-Al2O3 slurry catalysts with fluorine as an additive were prepared by complete liquidphase technology for hydrodesulfurization. The effect of different fluorine addition methods on the properties of the catalysts for 4,6-dimethyldibenzothiophene (4,6-DMDBT) hydrodesulfurization were investigated. The catalysts were characterized by X-ray diffraction (XRD), temperature-programmed reduction of H2 (H2-TPR), N2 adsorption-desorption isotherms (BET), X-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy (HRTEM). The results reveal that in the absence of nitric acid, adding fluoride into the catalyst before the introduce of molybdenum and nickel ions can significantly increase the surface area and average pore size, improve the dispersion of metallic nickel on the surface of catalyst, and weaken the interaction between the metal and the support. This effectively increases the sulfidation degree of Mo, MoS2 slab stacking, and the content of the highly active Ni-Mo-S(II) phase, which can promote the hydrogenation of the aromatic ring and the hydrogenolysis of the C-S bond, and thus increase the hydrodesulfurization activity for 4,6-DMDBT.
MnOx nanoparticles obtained by the emulsion method were loaded on a microporous tubular titanium membrane to prepare a functional MnOx/Ti electrocatalytic membrane. The effects of calcination temperature on the crystal structure of MnOx as well as the electrochemical properties and catalytic performance to oxidize benzyl alcohol of MnOx/Ti membrane were systematically investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), cyclic voltammetry (CV), chronoamperometry (CA), and other characterization methods. The results indicated that the crystal structure of MnOx was gradually transformed from Birnessite-MnO2 to K0.27MnO2, and finally to α- MnO2 from Mn3O4 with increasing calcination temperature. The α-MnO2 particles in the MnOx/Ti electrocatalytic membrane showed high crystallinity and uniform particle size (less than 30 nm). The superior electrochemical properties and catalytic performance of α-MnO2/Ti membrane obtained at a calcination temperature of 450 ℃ could be attributed to the binding effects between unsaturated coordination atoms of Mn and oxygen vacancies with the Ti substrate. The α-MnO2/Ti membrane obtained at 450 ℃ was used as the anode to assemble an electrocatalytic membrane reactor to oxidize benzyl alcohol. 64% conversion of benzyl alcohol and 79% selectivity to benzaldehyde was achieved under the operating conditions: reaction temperature 25 ℃, aqueous benzyl alcohol solution of 50 mmol·L-1, current density 2 mA·cm-2, and residence time 15 min.
The detection sensitivity of localized surface plasmon resonance (LSPR) microscopic probes is mainly determined by the LSPR property of the modified metal nanoparticle at the end of the probe. In this paper, spherical Au@Ag nanoparticles (NPs) with od size uniformity and a thick Ag shell (≥10 nm) were synthesized using the anion-assisted one-step synthesis method in aqueous solution, and the thickness of the Ag shell can be controlled by simply adjusting the molar ratio of Au to Ag in the solution. We characterized the morphology and composition of Au@Ag NPs with different core-shell ratios by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDS) line scanning analyses, which confirmed the controllable synthesis of Au@Ag core-shell NPs by this method. Measurement of the dielectric sensitivity of Au@Ag NPs with different core-shell ratios in different refractive index solutions showed that the core-shell nanostructure of 7.5 nm Au@28 nm Ag has the highest figure of merit for detection. Further investigation of the plasmonic properties of a single Au@Ag NP on nonconductive substrates with different refractive indexes confirmed that 7.5 nm Au@28 nm Ag NPs are one of the most suitable candidates for dielectric sensing in LSPR microscopy among the spherical Au@Ag NPs.
Adenosine receptors (ARs) are crucial therapeutic targets, and selective adenosine receptor anta nists are promising for numerous therapeutic applications. In this study, three dimensional models of human adenosine A1, A2B, and A3 receptors (A1AR, A2BAR, A3AR, respectively) were generated by homology modeling. In addition, pharmacophore models of the anta nists of four human adenosine receptor subtypes were developed using the LigandScout 3.12 program. Furthermore, Induced Fit Docking module of Schrödinger program was implemented to investigate receptor-ligand interactions. The results show that because of the subfamily-wide conservation of the core pocket residues, the ligand binding pockets of the three raw AR homology models are extremely similar, which poses challenges for subtype selective ligand recognition. However, the pharmacophore models of the four AR subtypes differ in pharmacophore features and spatial configuration, which are also consistent with previous site-directed mutagenesis studies. This indicates that binding site optimization is a crucial step in model generation, and the distributions for a set of pharmacophore features in ligand-based pharmacophore, including hydrogen bond acceptors, hydrogen bond donors, hydrophobic centroids, and aromatic rings, can reflect the position and direction characterization of hydrogen bonds and hydrophobic cavities, which aid identification and characterization of binding sites. This study may provide a significant theoretical foundation for further raw model optimization in homology modeling and discovery of novel selective human adenosine receptor anta nists.
In this study, mesoscopic optical structured 2,9-dimethyl-4,7-diphenyl-1,10-phenyl-1,10- phenanthrolin (bathocuproine, BCP) film was formed to enhance the out-coupling efficiency of a top blue organic light-emitting device (OLED). Based on the refractive index matching layer of BCP on the electrode, the light can be extracted through waveguide mode. Owing to the low glass transition temperature (Tg) of BCP, which easily self-aggregates in a specific environment (controlled temperature and humidity), a mesoscopic optical structure was obtained in 3 h after film formation. Through the nano-aggregated structure, the surface plasmon polariton (SPP) mode can match the free optic field. The efficiency of the device was enhanced: the max brightness increased from 4500 to 9840 cd·m-2 and the external quantum efficiency (EQE) increased from 0.42% to 1.14%. This leads to a 2.7-fold enhancement of top emission devices. Moreover, the EL spectra of the devices are also optimized by a blue-shift of 12 nm.
Hierarchical nitrogen-enriched porous carbon containing micropores, mesopores, and macropores were prepared by a nanocasting pathway using a Schiff base precursor and SBA-15 as the hard template. The specific surface area and pore volume of the obtained porous carbon are 752 m2·g-1 and 0.79 cm3·g-1, respectively. The nitrogen content is as high as 7.85% (w). The porous carbon shows a CO2 capacity of 97 cm3·g-1 at ambient pressure and 273 K. The CO2/N2 and CO2/CH4 separation ratios (molar ratios) are accordingly 7.0 and 3.2, and the Henry's low pressure selectivities are 23.3 and 4.2, respectively. CO2 adsorption tests confirmed that the micropores play a dominant role and nitrogen-containing functional groups play a synergistic role. The predicted ideal adsorbed solution theory (IAST) selectivities of the two-component mixed stream are 40 (CO2/N2) and 18 (CO2/CH4) by Toth mode simulation.
We established and developed an in situ X-ray absorption fine structure (XAFS) experimental testing device for characterizing hydrogen-oxygen proton exchange membrane fuel cells (PEMFC) on XAFS beamline BL14W1 at the Shanghai Synchrotron Radiation Facility (SSRF). XAFS data were collected under the operating state of the fuel cell with Pt/C and Pd/C as the cathode and anode catalysts, respectively, while the cell current-voltage (J-V) Curve and power density curves were monitored. Changes in the oxidation states of the Pt/C catalyst were observed during the reaction process at different potentials. Strong Pt-O bonds on the surfaces of the Pt were found to be induced at high potential; this may hinder the performance of Pt and reduce its oxygen reduction reaction (ORR) activity. The study also verified the reliability and feasibility of the herein established experimental apparatus and technique.
A novel, high-yielding synthesis of micro/nano ZnO pompons using glutamic acid fluoborate (GluBF4) ionic liquid is reported. The precursor was prepared with zinc acetatedihydrate [Zn(Ac)2·2H2O] and sodium hydroxide (molar ratio = 1:6) as starting materials in an aqueous solution of the GluBF4 ionic liquid at room temperature, which was then heated by microwave to form nano-ZnO powder. The ZnO pompons were characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), specific Brunauer-Emmett-Teller (BET) surface area method, and energy dispersive spectrometry (EDS). The product displayed a hexa nal wurtzite structure. The pompon diameter was determined to be 20.4 nm, with a pompon specific surface area of 28.3 m2·g-1. A possible mechanism for the formation of the nano-ZnO pompons is discussed. The ZnO pompons displayed high photocatalytic reactivity and photostability under sunlight. Aqueous solutions of methyl orange (MO) and methyl violet (MV) containing the ZnO pompons were exposed to sunlight and the decolorization rates were determined by monitoring the drop in color intensity. After 5 h, the solutions reached 74.3% and 96.9% degradation, respectively. The total organic carbon (TOC) content decreased as the photodegradation process occurred. The morphology, color, and weight of the ZnO pompons remained unchanged even after being reused five times.
A series of thermally activated delayed fluorescence (TADF) materials (1-3) based on triphenylamine/diphenyl sulfone were synthesized by Suzuki cross-coupling reactions. The optical, electrochemical, delayed fluorescence, and thermal properties of these materials were characterized by UVVis spectroscopy, time-resolved fluorescence spectroscopic measurements, cyclic voltammetry (CV), theoretical calculations, thermal gravimetric analyses, and differential scanning calorimetry. Materials 1-3 are bipolar compounds based on intramolecular charge transfer (ICT), and they have small energy gaps between the singlet and triplet (ΔEST) of 0.46, 0.39, and 0.29 eV, respectively. The results of fluorescent quantum yields and fluorescent lifetime indicate that these materials can emit delayed fluorescence, and material 3 has the greatest potential as a TADF emitter among materials 1-3. The highest occupied molecular orbital (HOMO) energy levels of materials 1-3 were estimated to be -4.91, -4.89, and -4.89 eV, respectively. From the HOMO energy levels and the optical bandgap (Eg) values, the lowest unoccupied molecular orbital (LUMO) energy levels were estimated to be -1.74, -1.89, and -1.94 eV for materials 1-3, respectively. Thermal gravimetric analysis results reveal that materials 1-3 have high thermal decomposition temperatures (Td), corresponding to 5% weight loss at 436, 387, and 310 ℃, respectively.