2020 Volume 38 Issue 1
2020, 38(1): 1-8
doi: 10.1007/s10118-019-2305-1
Abstract:
Researchers have put significant efforts on developing versatile fluorescent polymeric systems due to their promising biological/biomedical labelling, tracking, monitoring, imaging, and diagnostic applications. However, complicated organic/polymeric synthesis or post-modification of these functionalized platforms is still a big obstacle for their further application and thereby provides clear motivation for exploring alternative strategies for the design and fabrication of easily available fluorescent systems. The marriage of supramolecular polymers and fluorescent imaging can provide a facile and dynamic manner instead of tedious and time-consuming synthesis due to the dynamic and reversible nature of noncovalent interactions. Herein, based on water-soluble pillararene/paraquat molecular recognition, we successfully prepare two amphiphilic polypseudorotaxanes which can self-assemble into supramolecular polymersomes in water. These polymersomes can be reversibly destroyed and reformed by tuning the solution pH. Attributed to the aggregation-induced emission of tetraphenylethylene groups, intense fluorescence can be introduced into the obtained supramolecular polymersomes. Furthermore, pH-triggered release of an encapsulated water-insoluble drug (doxorubicin) from the self-assembled fluorescent supramolecular polymersomes is also investigated.
Researchers have put significant efforts on developing versatile fluorescent polymeric systems due to their promising biological/biomedical labelling, tracking, monitoring, imaging, and diagnostic applications. However, complicated organic/polymeric synthesis or post-modification of these functionalized platforms is still a big obstacle for their further application and thereby provides clear motivation for exploring alternative strategies for the design and fabrication of easily available fluorescent systems. The marriage of supramolecular polymers and fluorescent imaging can provide a facile and dynamic manner instead of tedious and time-consuming synthesis due to the dynamic and reversible nature of noncovalent interactions. Herein, based on water-soluble pillararene/paraquat molecular recognition, we successfully prepare two amphiphilic polypseudorotaxanes which can self-assemble into supramolecular polymersomes in water. These polymersomes can be reversibly destroyed and reformed by tuning the solution pH. Attributed to the aggregation-induced emission of tetraphenylethylene groups, intense fluorescence can be introduced into the obtained supramolecular polymersomes. Furthermore, pH-triggered release of an encapsulated water-insoluble drug (doxorubicin) from the self-assembled fluorescent supramolecular polymersomes is also investigated.
2020, 38(1): 9-16
doi: 10.1007/s10118-019-2303-3
Abstract:
Polymerization-induced self-assembly (PISA) is an efficient and versatile method to afford polymeric nano-objects with polymorphic morphologies. Compared to dispersion PISA syntheses based on soluble monomers, the vast majority of emulsion PISA formulations using insoluble monomers leads to kinetically-trapped spheres. Herein, we present aqueous emulsion PISA formulations generating worms and vesicles besides spheres. Two monomers with different butyl groups, n-butyl (nBHMA) and tert-butyl (tBHMA) α-hydroxymethyl acrylate, and thus possessing different water solubilities were synthesized via Baylis-Hillman reaction. Photoinitiated aqueous emulsion polymerizations of nBHMA and tBHMA employing poly(ethylene glycol) macromolecular chain transfer agents (macro-CTAs, PEG45-CTA, and PEG113-CTA) at 40 °C were systematically investigated to evaluate the effect of monomer structure and solubility on the morphology of the generated block copolymer nano-objects. Higher order morphologies including worms and vesicles were readily accessed for tBHMA, which has a higher water solubility than that of nBHMA. This study proves that plasticization of the core-forming block by water plays a key role in enhancing chain mobility required for morphological transition in emulsion PISA.
Polymerization-induced self-assembly (PISA) is an efficient and versatile method to afford polymeric nano-objects with polymorphic morphologies. Compared to dispersion PISA syntheses based on soluble monomers, the vast majority of emulsion PISA formulations using insoluble monomers leads to kinetically-trapped spheres. Herein, we present aqueous emulsion PISA formulations generating worms and vesicles besides spheres. Two monomers with different butyl groups, n-butyl (nBHMA) and tert-butyl (tBHMA) α-hydroxymethyl acrylate, and thus possessing different water solubilities were synthesized via Baylis-Hillman reaction. Photoinitiated aqueous emulsion polymerizations of nBHMA and tBHMA employing poly(ethylene glycol) macromolecular chain transfer agents (macro-CTAs, PEG45-CTA, and PEG113-CTA) at 40 °C were systematically investigated to evaluate the effect of monomer structure and solubility on the morphology of the generated block copolymer nano-objects. Higher order morphologies including worms and vesicles were readily accessed for tBHMA, which has a higher water solubility than that of nBHMA. This study proves that plasticization of the core-forming block by water plays a key role in enhancing chain mobility required for morphological transition in emulsion PISA.
2020, 38(1): 17-23
doi: 10.1007/s10118-019-2316-y
Abstract:
The copper-catalyzed and metal-free azide-alkyne click polymerizations have become efficient tools for polymer synthesis. However, the 1,3-dipolar polycycloadditions between internal alkynes and azides are rarely employed to construct functional polymers. Herein, the polycycloadditions of dibutynoate ( 1 ) and tetraphenylethene-containing diazides ( 2 ) were carried out at 100 °C for 12 h under solvent- and catalyst-free conditions, producing soluble poly(methyltriazolylcarboxylate)s (PMTCs) with high molecular weights in high yields. The resultant polymers were thermally stable with 5% weight loss temperatures up to 377 °C. The PMTCs showed aggregation-induced emission (AIE) properties. They could work as fluorescent sensors for detecting explosive with high sensitivity, and generate two-dimensional fluorescent photopatterns with high resolution. Furthermore, their triazolium salts could be utilized for cell-imaging applications.
The copper-catalyzed and metal-free azide-alkyne click polymerizations have become efficient tools for polymer synthesis. However, the 1,3-dipolar polycycloadditions between internal alkynes and azides are rarely employed to construct functional polymers. Herein, the polycycloadditions of dibutynoate ( 1 ) and tetraphenylethene-containing diazides ( 2 ) were carried out at 100 °C for 12 h under solvent- and catalyst-free conditions, producing soluble poly(methyltriazolylcarboxylate)s (PMTCs) with high molecular weights in high yields. The resultant polymers were thermally stable with 5% weight loss temperatures up to 377 °C. The PMTCs showed aggregation-induced emission (AIE) properties. They could work as fluorescent sensors for detecting explosive with high sensitivity, and generate two-dimensional fluorescent photopatterns with high resolution. Furthermore, their triazolium salts could be utilized for cell-imaging applications.
2020, 38(1): 24-36
doi: 10.1007/s10118-019-2293-1
Abstract:
Mechanochromic hydrogels, a new class of stimuli-responsive soft materials, have potential applications in a number of fields such as damage reporting and stress/strain sensing. We prepared a novel mechanochromic hydrogel using a strategy that has been developed to prepare dual-network (DN) hydrogels. A hydrophobic rhodamine derivative (Rh mechanophore) was covalently incorporated into a first network as a cross-linker. This first network embedded with Rh mechanophore within the DN hydrogel was pre-stretched. This guaranteed that the stress could be transferred extensively to the Rh-crosslinked first network once the hydrogel was under an applied force. Interestingly, we found that the threshold stress required to activate the mechanochromism of the hydrogel was less than 200 kPa, and much less than those in previous reports. Moreover, because of the excellent sensitivity of the hydrogel to stress, the DN hydrogel exhibited reversible freezing-induced mechanochromism. Benefiting from the sensitivity of Rh mechanophore to both pH and force, the DN hydrogel showed pH-regulated mechanochromic behavior. Our experimental results indicate that the preparation strategy we used introduces sensitive mechanochromism into the hydrogel and preserves the advantageous mechanical properties of the DN hydrogel. These results will be beneficial to the design and preparation of mechanochromic hydrogels with high stress sensitivity, and foster their practical applications in a number of fields such as damage reporting and stress/strain sensing.
Mechanochromic hydrogels, a new class of stimuli-responsive soft materials, have potential applications in a number of fields such as damage reporting and stress/strain sensing. We prepared a novel mechanochromic hydrogel using a strategy that has been developed to prepare dual-network (DN) hydrogels. A hydrophobic rhodamine derivative (Rh mechanophore) was covalently incorporated into a first network as a cross-linker. This first network embedded with Rh mechanophore within the DN hydrogel was pre-stretched. This guaranteed that the stress could be transferred extensively to the Rh-crosslinked first network once the hydrogel was under an applied force. Interestingly, we found that the threshold stress required to activate the mechanochromism of the hydrogel was less than 200 kPa, and much less than those in previous reports. Moreover, because of the excellent sensitivity of the hydrogel to stress, the DN hydrogel exhibited reversible freezing-induced mechanochromism. Benefiting from the sensitivity of Rh mechanophore to both pH and force, the DN hydrogel showed pH-regulated mechanochromic behavior. Our experimental results indicate that the preparation strategy we used introduces sensitive mechanochromism into the hydrogel and preserves the advantageous mechanical properties of the DN hydrogel. These results will be beneficial to the design and preparation of mechanochromic hydrogels with high stress sensitivity, and foster their practical applications in a number of fields such as damage reporting and stress/strain sensing.
2020, 38(1): 37-44
doi: 10.1007/s10118-019-2302-4
Abstract:
The synthesis of a new azobenzene (azo)-containing main-chain crystalline polymer with reactive secondary amino groups in its backbone and photodeformation behaviors of its supramolecular hydrogen-bonded fibers are described. This main-chain azo polymer (namely Azo-MP6) was prepared via first the synthesis of a diacrylate-type azo monomer and its subsequent Michael addition copolymerization with trans-1,4-cyclohexanediamine under a mild reaction condition. Azo-MP6 was found to have a linear main-chain chemical structure instead of a branched one, as verified by comparing its 1H-NMR spectrum with that of the azo polymer prepared via the polymer analogous reaction of Azo-MP6 with acetic anhydride. The thermal stability, phase transition behavior, and photoresponsivity of Azo-MP6 were characterized with TGA, DSC, POM, XRD, and UV-Vis spectroscopy. The experimental results revealed that it had good thermal stability, low glass transition temperature, broad crystalline phase temperature range, and highly reversible photoresponsivity. Physically crosslinked supramolecular hydrogen-bonded fibers with good mechanical properties and a high alignment order of azo mesogens were readily fabricated from Azo-MP6 by using the simple melt spinning method, and they could show " reversible” photoinduced bending under the same UV light irradiation and good anti-fatigue properties.
The synthesis of a new azobenzene (azo)-containing main-chain crystalline polymer with reactive secondary amino groups in its backbone and photodeformation behaviors of its supramolecular hydrogen-bonded fibers are described. This main-chain azo polymer (namely Azo-MP6) was prepared via first the synthesis of a diacrylate-type azo monomer and its subsequent Michael addition copolymerization with trans-1,4-cyclohexanediamine under a mild reaction condition. Azo-MP6 was found to have a linear main-chain chemical structure instead of a branched one, as verified by comparing its 1H-NMR spectrum with that of the azo polymer prepared via the polymer analogous reaction of Azo-MP6 with acetic anhydride. The thermal stability, phase transition behavior, and photoresponsivity of Azo-MP6 were characterized with TGA, DSC, POM, XRD, and UV-Vis spectroscopy. The experimental results revealed that it had good thermal stability, low glass transition temperature, broad crystalline phase temperature range, and highly reversible photoresponsivity. Physically crosslinked supramolecular hydrogen-bonded fibers with good mechanical properties and a high alignment order of azo mesogens were readily fabricated from Azo-MP6 by using the simple melt spinning method, and they could show " reversible” photoinduced bending under the same UV light irradiation and good anti-fatigue properties.
2020, 38(1): 45-52
doi: 10.1007/s10118-019-2317-x
Abstract:
One-component, catalyst-free self-healing coatings with double-shelled polymer microcapsules have drawn considerable attention due to wide applications. In this work, the synthesis parameters of double-shelled polymer microcapsules and the mechanism of the self-healing process were systematically investigated. Apart from the chemical structure of the microcapsule shell, the shell thickness, the microcapsule size, and the core fraction could affect the self-healing anticorrosion properties. The synthesis parameters were further optimized in terms of the agitation rate, pH, weight ratio of core to shell, and temperature. Under these conditions, the microcapsule shell consisting of a rough surface formed by poly(urea-formaldehyde) and a smooth inner wall by polyurethane was prepared. The size of the microcapsules and core fraction were calculated to be approximately 30 μm and 75%, respectively. The self-healing anticorrosion coating incorporating as-synthesized microcapsules exhibited corrosion resistance in artificially scratched areas, which was further characterized by electrochemical impedance spectroscopy.
One-component, catalyst-free self-healing coatings with double-shelled polymer microcapsules have drawn considerable attention due to wide applications. In this work, the synthesis parameters of double-shelled polymer microcapsules and the mechanism of the self-healing process were systematically investigated. Apart from the chemical structure of the microcapsule shell, the shell thickness, the microcapsule size, and the core fraction could affect the self-healing anticorrosion properties. The synthesis parameters were further optimized in terms of the agitation rate, pH, weight ratio of core to shell, and temperature. Under these conditions, the microcapsule shell consisting of a rough surface formed by poly(urea-formaldehyde) and a smooth inner wall by polyurethane was prepared. The size of the microcapsules and core fraction were calculated to be approximately 30 μm and 75%, respectively. The self-healing anticorrosion coating incorporating as-synthesized microcapsules exhibited corrosion resistance in artificially scratched areas, which was further characterized by electrochemical impedance spectroscopy.
2020, 38(1): 53-62
doi: 10.1007/s10118-019-2299-8
Abstract:
Novel bio-based and biodegradable block copolymers were synthesized by " click” reaction between poly(L-lactide) (PLLA) and polyamide 4 (PA4). Upon tuning the molar mass of PLLA block, the properties of copolymers and electrospun ultrafine fibers were investigated and compared with those of PLLA and PA4 blends. PLLA and PA4 were found incompatible and formed individual crystalline regions, along with reciprocal inhibition in crystallization. Electrospun fibers were highly hydrophobic, even if hydrophilic PA4 was the rich component. The crystallinity of either PLLA or PA4 decreased after electrospinning and PLLA-rich as-spun fibers were almost amorphous. Immersion tests proved that fibers of block copolymers were relatively homogeneous with micro-phase separation between PLLA and PA4. The fibrous structures of copolymers were different from those of the fibers electrospun from blends, for which sheath-core structure induced by macro-phase separation between homopolymers of PLLA and PA4 was confirmed by TEM, EDS, and XPS.
Novel bio-based and biodegradable block copolymers were synthesized by " click” reaction between poly(L-lactide) (PLLA) and polyamide 4 (PA4). Upon tuning the molar mass of PLLA block, the properties of copolymers and electrospun ultrafine fibers were investigated and compared with those of PLLA and PA4 blends. PLLA and PA4 were found incompatible and formed individual crystalline regions, along with reciprocal inhibition in crystallization. Electrospun fibers were highly hydrophobic, even if hydrophilic PA4 was the rich component. The crystallinity of either PLLA or PA4 decreased after electrospinning and PLLA-rich as-spun fibers were almost amorphous. Immersion tests proved that fibers of block copolymers were relatively homogeneous with micro-phase separation between PLLA and PA4. The fibrous structures of copolymers were different from those of the fibers electrospun from blends, for which sheath-core structure induced by macro-phase separation between homopolymers of PLLA and PA4 was confirmed by TEM, EDS, and XPS.
2020, 38(1): 63-71
doi: 10.1007/s10118-019-2297-x
Abstract:
The mechanical properties of poly(arylene sulfide sulfone) (PASS) electrospun membrane were significantly enhanced by co-electrospinning with semi-aromatic nylon poly(m-xylene adipamide) (MXD6), another engineering plastic with high thermal stability and good mechanical properties. The tensile strength of PASS membrane increased with increased incorporation of MXD6, and was tripled when 20% MXD6 was incorporated. The mechanism of the mechanical property improvement is the existence of hydrogen bonding interaction between PASS and MXD6 and between adjacent fibers at the intersections. Thermal properties of the PASS/MXD6 membranes were evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), which showed that the membranes could be stably utilized up to 180 °C without any change in appearance and without decomposition. Contact angle measurements of all the membranes showed hydrophobic character. To demonstrate the potential applications of PASS/MXD6 blend membranes, their oil absorption capacities were evaluated with three oils of different viscosities, which proved that the PASS/MXD6 membranes are better absorbents than commercial non-woven polypropylene fibers. Therefore, PASS/MXD6 fibrous membranes produced by electrospinning have a great potential in practical applications.
The mechanical properties of poly(arylene sulfide sulfone) (PASS) electrospun membrane were significantly enhanced by co-electrospinning with semi-aromatic nylon poly(m-xylene adipamide) (MXD6), another engineering plastic with high thermal stability and good mechanical properties. The tensile strength of PASS membrane increased with increased incorporation of MXD6, and was tripled when 20% MXD6 was incorporated. The mechanism of the mechanical property improvement is the existence of hydrogen bonding interaction between PASS and MXD6 and between adjacent fibers at the intersections. Thermal properties of the PASS/MXD6 membranes were evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), which showed that the membranes could be stably utilized up to 180 °C without any change in appearance and without decomposition. Contact angle measurements of all the membranes showed hydrophobic character. To demonstrate the potential applications of PASS/MXD6 blend membranes, their oil absorption capacities were evaluated with three oils of different viscosities, which proved that the PASS/MXD6 membranes are better absorbents than commercial non-woven polypropylene fibers. Therefore, PASS/MXD6 fibrous membranes produced by electrospinning have a great potential in practical applications.
2020, 38(1): 72-83
doi: 10.1007/s10118-019-2311-3
Abstract:
Vanillin was used as sustainable source for phthalonitrile monomer synthesis, and allyl/propargyl ether moieties were introduced to improve the processability at the minimal cost of thermal properties. The synthesis route was optimized to minimize side-reactions and simplify post-processing, and the monomers were obtained in high purity and good yields. The curing behavior, mechanism, and processability of the monomers were studied, and the thermal properties of cured polymers were evaluated. Of the two monomers, the allyl ether-containing one exhibited a wide processing window of 185 °C, and was mainly cured into phthalocyanine and linear aliphatic structures through self-catalytic curing process. Also, the glass transition temperature was higher than 500 °C. In contrast, the propargyl ether-containing monomer could only be partially cured, and heat resistance was found to be compromised. Compared with traditional petroleum-based phthalonitrile resins, the bio-based monomers could be cured without the addition of catalysts, and improvement in processability was achieved at no cost of thermal performances.
Vanillin was used as sustainable source for phthalonitrile monomer synthesis, and allyl/propargyl ether moieties were introduced to improve the processability at the minimal cost of thermal properties. The synthesis route was optimized to minimize side-reactions and simplify post-processing, and the monomers were obtained in high purity and good yields. The curing behavior, mechanism, and processability of the monomers were studied, and the thermal properties of cured polymers were evaluated. Of the two monomers, the allyl ether-containing one exhibited a wide processing window of 185 °C, and was mainly cured into phthalocyanine and linear aliphatic structures through self-catalytic curing process. Also, the glass transition temperature was higher than 500 °C. In contrast, the propargyl ether-containing monomer could only be partially cured, and heat resistance was found to be compromised. Compared with traditional petroleum-based phthalonitrile resins, the bio-based monomers could be cured without the addition of catalysts, and improvement in processability was achieved at no cost of thermal performances.
2020, 38(1): 84-91
doi: 10.1007/s10118-020-2336-7
Abstract:
Polyester (PET) was pre-activated by atmospheric air plasma and coated by various inorganic oxide nanoparticles (MOx) such as titanium dioxide (TiO2), zinc oxide (ZnO), and silicon oxide (SiO2), using poly(vinylidene fluoride) (PVDF) and chitosan (CT) as binders. The resulting PET-PVDF-MOx-CT composites were thermally compressed and then characterized by scanning electron microscopy, Fourier infrared spectroscopy, thermal gravimetric analysis, and flame retardancy (FR) ability tests. PET modifications resulted in more thermally stable and less harmful composites with weaker hazardous gas release. This was explained in terms of structure compaction that blocks pyrolysis gas emissions. CT incorporation was found to reduce the material susceptibility to oxidation. This judicious procedure also allowed improving flame retardancy ability, by lengthening the combustion delay and slowing the flame propagation. Chitosan also turned out to contribute to a possible synergy with the other polymers present in the synthesized materials. These results provide valuable data that allow understanding the FR phenomena and envisaging low-cost high FR materials from biodegradable raw materials.
Polyester (PET) was pre-activated by atmospheric air plasma and coated by various inorganic oxide nanoparticles (MOx) such as titanium dioxide (TiO2), zinc oxide (ZnO), and silicon oxide (SiO2), using poly(vinylidene fluoride) (PVDF) and chitosan (CT) as binders. The resulting PET-PVDF-MOx-CT composites were thermally compressed and then characterized by scanning electron microscopy, Fourier infrared spectroscopy, thermal gravimetric analysis, and flame retardancy (FR) ability tests. PET modifications resulted in more thermally stable and less harmful composites with weaker hazardous gas release. This was explained in terms of structure compaction that blocks pyrolysis gas emissions. CT incorporation was found to reduce the material susceptibility to oxidation. This judicious procedure also allowed improving flame retardancy ability, by lengthening the combustion delay and slowing the flame propagation. Chitosan also turned out to contribute to a possible synergy with the other polymers present in the synthesized materials. These results provide valuable data that allow understanding the FR phenomena and envisaging low-cost high FR materials from biodegradable raw materials.
Directed Self-assembly of Vertical PS-b-PMMA Nanodomains Grown on Multilayered Polyelectrolyte Films
2020, 38(1): 92-99
doi: 10.1007/s10118-019-2315-z
Abstract:
Layer-by-layer polyelectrolyte self-assembly, a common method for preparing high-quality ultra-thin films, was employed to direct the self-assembly behavior of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) block copolymer for the first time. Differing from the previous neutral polymer brushes anchored to silicon substrates via chemical modification, polyelectrolyte multilayers (PEMs) were anchored by electrostatic interaction and provided a stable, smooth, and neutral interface. In the present study, PS-b-PMMA was deposited on poly(acrylamide hydrochloride)/poly(acrylic acid) (PAH/PAA) PEMs prepared by layer-by-layer self-assembly to successfully yield vertical nanodomains after thermal annealing. Seven layered PEMs revealed an excellent, smooth surface, with a low roughness of 0.6 nm. The periodic structure with interlamellar spacing of 47 nm was determined by grazing-incidence small-angle X-ray scattering (GISAXS). The morphology of the PS-b-PMMA nanodomains depended on the polyanion-to-polycation concentration ratio, which is related to the interaction between the block copolymer and the substrate. Our results demonstrate that layer-by-layer self-assembly is a helpful method for the phase separation of block polymers and the fabrication of vertical, ordered nanodomains.
Layer-by-layer polyelectrolyte self-assembly, a common method for preparing high-quality ultra-thin films, was employed to direct the self-assembly behavior of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) block copolymer for the first time. Differing from the previous neutral polymer brushes anchored to silicon substrates via chemical modification, polyelectrolyte multilayers (PEMs) were anchored by electrostatic interaction and provided a stable, smooth, and neutral interface. In the present study, PS-b-PMMA was deposited on poly(acrylamide hydrochloride)/poly(acrylic acid) (PAH/PAA) PEMs prepared by layer-by-layer self-assembly to successfully yield vertical nanodomains after thermal annealing. Seven layered PEMs revealed an excellent, smooth surface, with a low roughness of 0.6 nm. The periodic structure with interlamellar spacing of 47 nm was determined by grazing-incidence small-angle X-ray scattering (GISAXS). The morphology of the PS-b-PMMA nanodomains depended on the polyanion-to-polycation concentration ratio, which is related to the interaction between the block copolymer and the substrate. Our results demonstrate that layer-by-layer self-assembly is a helpful method for the phase separation of block polymers and the fabrication of vertical, ordered nanodomains.
2020, 38(1): 100-108
doi: 10.1007/s10118-019-2300-6
Abstract:
How to control the spatial distribution of nanoparticles to meet different performance requirements is a constant challenge in the field of polymer nanocomposites. Current studies have been focused on the flexible polymer chain systems. In this study, the rigid polyimide (PI) chain grafted silica particles with different grafting chain lengths and grafting densities were prepared by " grafting to” method, and the influence of polymerization degree of grafted chains (N), matrix chains (P), and grafting density (σ) on the spatial distribution of nanoparticles in the PI matrix was explored. The glass transition temperature (Tg) of PI composites was systematically investigated as well. The results show that silica particles are well dispersed in polyamic acid composite systems, while aggregation and small clusters appear in PI nanocomposites after thermal imidization. Besides, the particle size has no impact on the spatial distribution of nanoparticles. When\begin{document}${ {\textit{σ}} \cdot {N^{0.5}} \ll {\left( {N/P} \right)^2}}$\end{document} ![]()
![]()
, the grafted and matrix chains interpenetrate, and the frictional resistance of the segment increases, resulting in restricted relaxation kinetics and Tg increase of the PI composite system. In addition, smaller particle size and longer grafted chains are beneficial to improving Tg of composites. These results are all propitious to complete the microstructure control theory of nanocomposites and make a theoretical foundation for the high performance and multi-function of PI nanocomposites.
How to control the spatial distribution of nanoparticles to meet different performance requirements is a constant challenge in the field of polymer nanocomposites. Current studies have been focused on the flexible polymer chain systems. In this study, the rigid polyimide (PI) chain grafted silica particles with different grafting chain lengths and grafting densities were prepared by " grafting to” method, and the influence of polymerization degree of grafted chains (N), matrix chains (P), and grafting density (σ) on the spatial distribution of nanoparticles in the PI matrix was explored. The glass transition temperature (Tg) of PI composites was systematically investigated as well. The results show that silica particles are well dispersed in polyamic acid composite systems, while aggregation and small clusters appear in PI nanocomposites after thermal imidization. Besides, the particle size has no impact on the spatial distribution of nanoparticles. When