2016 Volume 34 Issue 2
2016, 34(2): 135-146
doi: 10.1007/s10118-016-1739-y
Abstract:
Integration of biocompatibility with superparamagnetic Fe3O4 nanoparticles and luminescence rare earth complexes Eu(AA)3Phen was carried out to form bifunctional nanospheres for using in bioimaging applications. The nanospheres Poly(MMA-HEMA-Eu(AA)3Phen)/Fe3O4 exhibit magnetic and fluorescent properties that are favorable for the use in drug delivery, magnetic separation and MR imaging for biomedical research. The TEM and SEM studies reveal that the bifunctional nanospheres have core-shell structure, in a spherical shape with a size ranging from 140 nm to 180 nm. In MRI experiments, a clear negative contrast enhancement in T2 images and the r2 reaches 568.82 (mmolL-1)-1s-1. In vivo magnetic and fluorescence resonance imaging results suggest the nanospheres are able to preferentially accumulate in liver and spleen tissues to allow dual-modal detection of cancer cells in a living body.
Integration of biocompatibility with superparamagnetic Fe3O4 nanoparticles and luminescence rare earth complexes Eu(AA)3Phen was carried out to form bifunctional nanospheres for using in bioimaging applications. The nanospheres Poly(MMA-HEMA-Eu(AA)3Phen)/Fe3O4 exhibit magnetic and fluorescent properties that are favorable for the use in drug delivery, magnetic separation and MR imaging for biomedical research. The TEM and SEM studies reveal that the bifunctional nanospheres have core-shell structure, in a spherical shape with a size ranging from 140 nm to 180 nm. In MRI experiments, a clear negative contrast enhancement in T2 images and the r2 reaches 568.82 (mmolL-1)-1s-1. In vivo magnetic and fluorescence resonance imaging results suggest the nanospheres are able to preferentially accumulate in liver and spleen tissues to allow dual-modal detection of cancer cells in a living body.
2016, 34(2): 147-163
doi: 10.1007/s10118-016-1740-5
Abstract:
Epidural scarring occurs inevitably in the defect after spinal laminectomy, and thus how to prevent or reduce it becomes a challenging topic. In the present study, an injectable hydrogel and its dexamethasone (DEX)-loaded hydrogel systems were adopted to prevent epidural scarring in a postlaminectomy rat model. The hydrogel system composed of poly(D,L-lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(D,L-lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) triblock copolymers was a free-flowing sol at room temperature, and spontaneously turned into a semi-solid gel at body temperature. A lumbar 3 total laminectomy was performed on Sprague Dawley (SD) rats, and the efficacy of the injectable hydrogel with or without drugs in preventing epidural scar formation was evaluated via the gross anatomical observation and histological examination at one month post-surgery. The results demonstrate that the use of hydrogel alone reduced epidural scarring significantly, whereas the efficacy of the DEX-loaded hydrogels presented an irregular dose-dependency of drug and even the inappropriate drug doses resulted in the negative results. Therefore, the present study confirms that the PLGA-PEG-PLGA hydrogel holds potential as a barrier device to decrease peridural scarring, and reveals that the sustained delivery of the steroid hormone DEX to prevent surgery-related adhesions in the laminectomy defect is complex. Moreover, our in vivo studies also remind the researchers to pay attention to the irregular dose-dependency of the hormone drugs.
Epidural scarring occurs inevitably in the defect after spinal laminectomy, and thus how to prevent or reduce it becomes a challenging topic. In the present study, an injectable hydrogel and its dexamethasone (DEX)-loaded hydrogel systems were adopted to prevent epidural scarring in a postlaminectomy rat model. The hydrogel system composed of poly(D,L-lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(D,L-lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) triblock copolymers was a free-flowing sol at room temperature, and spontaneously turned into a semi-solid gel at body temperature. A lumbar 3 total laminectomy was performed on Sprague Dawley (SD) rats, and the efficacy of the injectable hydrogel with or without drugs in preventing epidural scar formation was evaluated via the gross anatomical observation and histological examination at one month post-surgery. The results demonstrate that the use of hydrogel alone reduced epidural scarring significantly, whereas the efficacy of the DEX-loaded hydrogels presented an irregular dose-dependency of drug and even the inappropriate drug doses resulted in the negative results. Therefore, the present study confirms that the PLGA-PEG-PLGA hydrogel holds potential as a barrier device to decrease peridural scarring, and reveals that the sustained delivery of the steroid hormone DEX to prevent surgery-related adhesions in the laminectomy defect is complex. Moreover, our in vivo studies also remind the researchers to pay attention to the irregular dose-dependency of the hormone drugs.
2016, 34(2): 164-173
doi: 10.1007/s10118-016-1747-y
Abstract:
The crystallization behavior, rheological behavior, mechanical properties and microstructures of injection molded isotactic polypropylene (iPP), polypropylene random copolymer (co-PP) and iPP/co-PP blends were investigated. Differential scanning calorimetry (DSC) and dynamic rheological analysis illustrated that iPP and co-PP were compatible in the blends and co-PP uniformly dispersed in the iPP phase. Polarizing optical microscope (POM) was adopted to observe the crystal size and morphology evolution. The results of mechanical properties and scanning electron microscopy (SEM) indicated that the crystal size of iPP in iPP/co-PP blends (10 wt% co-PP + 90 wt% iPP and 30 wt% co-PP + 70 wt% iPP) radically decreased after the incorporation of co-PP. During crystallization, the molecular chain segments of co-PP could penetrate iPP spherulites and form a network-like crystalline structure. The network-like crystal structure could effectively transmit stress and consume more energy to overcome intermolecular forces to resist stretching. In this way, the strength would improve to a certain degree. The impact fracture mechanism of iPP/co-PP blends is quasi ductile fracture by multiple crazes. Our work discovered that the blends containing 10 wt% and 30 wt% of co-PP exhibited prominent toughness and reinforcement.
The crystallization behavior, rheological behavior, mechanical properties and microstructures of injection molded isotactic polypropylene (iPP), polypropylene random copolymer (co-PP) and iPP/co-PP blends were investigated. Differential scanning calorimetry (DSC) and dynamic rheological analysis illustrated that iPP and co-PP were compatible in the blends and co-PP uniformly dispersed in the iPP phase. Polarizing optical microscope (POM) was adopted to observe the crystal size and morphology evolution. The results of mechanical properties and scanning electron microscopy (SEM) indicated that the crystal size of iPP in iPP/co-PP blends (10 wt% co-PP + 90 wt% iPP and 30 wt% co-PP + 70 wt% iPP) radically decreased after the incorporation of co-PP. During crystallization, the molecular chain segments of co-PP could penetrate iPP spherulites and form a network-like crystalline structure. The network-like crystal structure could effectively transmit stress and consume more energy to overcome intermolecular forces to resist stretching. In this way, the strength would improve to a certain degree. The impact fracture mechanism of iPP/co-PP blends is quasi ductile fracture by multiple crazes. Our work discovered that the blends containing 10 wt% and 30 wt% of co-PP exhibited prominent toughness and reinforcement.
2016, 34(2): 174-184
doi: 10.1007/s10118-016-1736-1
Abstract:
The effects of weight-average molecular (Mw), molecular weight distribution (MWD), and isotacticity on the linear viscoelastic behavior of polybutene-1 melts are studied. It is observed that the linear viscoelastic region becomes slightly narrower with increasing frequency. In frequency sweeps, the transition of the polymer melts flow from Newtonian flow to power-law flow can be observed. The melts with higher Mw and/or broader MWD, as well as higher isotacticity exhibit higher complex viscosity, zero shear viscosity, viscoelasticity moduli, relaxation modulus, broader transition zone, while lower critical shear rate, non-Newtonian index, and the frequency at which elasticity begins to play an important role. The relationship of zero shear viscosity on Mw has been established, which agrees with the classical power law. Furthermore, it is found that the cross-over frequency decreases with increasing Mw and the cross-over modulus increases with narrowing MWD.
The effects of weight-average molecular (Mw), molecular weight distribution (MWD), and isotacticity on the linear viscoelastic behavior of polybutene-1 melts are studied. It is observed that the linear viscoelastic region becomes slightly narrower with increasing frequency. In frequency sweeps, the transition of the polymer melts flow from Newtonian flow to power-law flow can be observed. The melts with higher Mw and/or broader MWD, as well as higher isotacticity exhibit higher complex viscosity, zero shear viscosity, viscoelasticity moduli, relaxation modulus, broader transition zone, while lower critical shear rate, non-Newtonian index, and the frequency at which elasticity begins to play an important role. The relationship of zero shear viscosity on Mw has been established, which agrees with the classical power law. Furthermore, it is found that the cross-over frequency decreases with increasing Mw and the cross-over modulus increases with narrowing MWD.
2016, 34(2): 185-194
doi: 10.1007/s10118-016-1744-1
Abstract:
Herein, we present a novel way for the production of self-healing hydrogels with stretch beyond 4200% than their initial length and relatively high tensile strength (0.1-0.25 MPa). Furthermore, the hydrogel was insensitive to notch. Even for the samples containing V-notches, a stretch of 2300% was demonstrated. The hydrogels were developed by in situ crosslinking of the self-assembled colloidal poly(acrylic acid) (PAA)/functionalized polyhedral oligomeric silsesquioxane (POSS) micelles. This was achieved by the addition of functionalized polyhedral oligomeric silsesquioxane with tertiary amines and hydroxyls (POSS-AH) into the PAA reaction solution. The POSS-AH led to micellar growth, then the dual-crosslinked network was constructed. One type of crosslink was formed by hydrogen-bonding and ionic interactions between PAA chains and POSS-AH, the other type of crosslink was formed by covalent bonds between PAA and bis(N,N'-methylene-bis-acrylamide).
Herein, we present a novel way for the production of self-healing hydrogels with stretch beyond 4200% than their initial length and relatively high tensile strength (0.1-0.25 MPa). Furthermore, the hydrogel was insensitive to notch. Even for the samples containing V-notches, a stretch of 2300% was demonstrated. The hydrogels were developed by in situ crosslinking of the self-assembled colloidal poly(acrylic acid) (PAA)/functionalized polyhedral oligomeric silsesquioxane (POSS) micelles. This was achieved by the addition of functionalized polyhedral oligomeric silsesquioxane with tertiary amines and hydroxyls (POSS-AH) into the PAA reaction solution. The POSS-AH led to micellar growth, then the dual-crosslinked network was constructed. One type of crosslink was formed by hydrogen-bonding and ionic interactions between PAA chains and POSS-AH, the other type of crosslink was formed by covalent bonds between PAA and bis(N,N'-methylene-bis-acrylamide).
2016, 34(2): 195-208
doi: 10.1007/s10118-016-1741-4
Abstract:
In this paper, the continuum self-consistent field theory (SCFT) is applied to study the structure and the interaction of the adsorption of symmetrical ABA polyampholytes (PAs) between two neutral planes. It is found that the amounts of all the conformations decrease with the increase of the charge fraction of polymer chain, and increase with the increase of the bulk salt concentration and become saturated at high bulk salt concentration. The effective interaction between the two planes presented a long-range repulsion. Splitting it into various components and relating with the dependence of the variations of the conformations on environment parameters, we try to find the origin of the total long-range interaction between the two planes.
In this paper, the continuum self-consistent field theory (SCFT) is applied to study the structure and the interaction of the adsorption of symmetrical ABA polyampholytes (PAs) between two neutral planes. It is found that the amounts of all the conformations decrease with the increase of the charge fraction of polymer chain, and increase with the increase of the bulk salt concentration and become saturated at high bulk salt concentration. The effective interaction between the two planes presented a long-range repulsion. Splitting it into various components and relating with the dependence of the variations of the conformations on environment parameters, we try to find the origin of the total long-range interaction between the two planes.
2016, 34(2): 209-220
doi: 10.1007/s10118-016-1749-9
Abstract:
In this study, polyimide fibers at different stages of imidization were characterized by TGA, DSC, and FTIR. The imidization degree (ID) calculated by TGA was based on the weight loss of each sample, which was caused by the imidization of residual amic acid groups. The results of TGA showed good regularity with the thermal treatment temperature of the PI fibers. For DSC, the ID was calculated based on the area of endothermal peak of each sample. Compared with TGA, DSC showed a relatively higher value because the endothermal peak was reduced by the exothermic re-formation of polyamic acid which may be partially degraded during thermal treatment. The IDs obtained by the FTIR spectra generally showed poorer regularities than those obtained by both TGA and DSC, especially for the results calculated using the 730 cm-1 band. Based on the 1350 cm-1 band, the obtained IDs showed better agreement with the TGA or DSC results. The results obtained by these three methods were compared and analyzed. The ID obtained by TGA showed much more reliability among these three methods.
In this study, polyimide fibers at different stages of imidization were characterized by TGA, DSC, and FTIR. The imidization degree (ID) calculated by TGA was based on the weight loss of each sample, which was caused by the imidization of residual amic acid groups. The results of TGA showed good regularity with the thermal treatment temperature of the PI fibers. For DSC, the ID was calculated based on the area of endothermal peak of each sample. Compared with TGA, DSC showed a relatively higher value because the endothermal peak was reduced by the exothermic re-formation of polyamic acid which may be partially degraded during thermal treatment. The IDs obtained by the FTIR spectra generally showed poorer regularities than those obtained by both TGA and DSC, especially for the results calculated using the 730 cm-1 band. Based on the 1350 cm-1 band, the obtained IDs showed better agreement with the TGA or DSC results. The results obtained by these three methods were compared and analyzed. The ID obtained by TGA showed much more reliability among these three methods.
2016, 34(2): 221-228
doi: 10.1007/s10118-016-1734-3
Abstract:
A series of nickel(II) -diimine complexes with strong electron-withdrawing carboxyl groups, having reactive hydrogen atoms, were prepared and used as precatalysts for ethylene oligomerization and/or polymerization. The influence of metal halides and ligand structure on the catalytic activity and properties of products was investigated. The results showed that nickel bromide was much more active than nickel chloride, and the substituents at the ortho-position of aryl ring had large influence on the properties of products. Therefore, the products ranging from liquid oligomers to polymers could be readily obtained by the variation of the substituents on the ligands and reaction conditions.
A series of nickel(II) -diimine complexes with strong electron-withdrawing carboxyl groups, having reactive hydrogen atoms, were prepared and used as precatalysts for ethylene oligomerization and/or polymerization. The influence of metal halides and ligand structure on the catalytic activity and properties of products was investigated. The results showed that nickel bromide was much more active than nickel chloride, and the substituents at the ortho-position of aryl ring had large influence on the properties of products. Therefore, the products ranging from liquid oligomers to polymers could be readily obtained by the variation of the substituents on the ligands and reaction conditions.
2016, 34(2): 229-241
doi: 10.1007/s10118-016-1742-3
Abstract:
An amino acid side chain functionalized polyfluorene derivative poly[N-(9-fluorenylmethoxycarbonyl)-glycine] (P9FG) was facilely electrosynthesized and characterized, and the structure, properties and optical sensing application of the obtained polymer were described and discussed. The electropolymerization occurred at C2 and C7 positions of fluorene units, and amino acid side chain groups were not cleaved from polyfluorene backbone in mixed electrolytes of boron trifluoride diethyl etherate and dichloromethane. Thermal analysis demonstrated good thermal stability of P9FG. Fluorescent spectra indicated that P9FG was a good blue light emitting material that could be employed as optical sensors. The soluble P9FG as a turn-off fluorescent sensor could realize the detection of Fe3+, Cu2+ and Cr2O72-, respectively. In addition, P9FG as a turn-off ultraviolet sensor could realize the detection of Cu2+ while as turn-on ultraviolet sensors could also realize the determination of Fe3+ and Cr2O72-, respectively. All results indicate that P9FG is a promising candidate for optical sensing.
An amino acid side chain functionalized polyfluorene derivative poly[N-(9-fluorenylmethoxycarbonyl)-glycine] (P9FG) was facilely electrosynthesized and characterized, and the structure, properties and optical sensing application of the obtained polymer were described and discussed. The electropolymerization occurred at C2 and C7 positions of fluorene units, and amino acid side chain groups were not cleaved from polyfluorene backbone in mixed electrolytes of boron trifluoride diethyl etherate and dichloromethane. Thermal analysis demonstrated good thermal stability of P9FG. Fluorescent spectra indicated that P9FG was a good blue light emitting material that could be employed as optical sensors. The soluble P9FG as a turn-off fluorescent sensor could realize the detection of Fe3+, Cu2+ and Cr2O72-, respectively. In addition, P9FG as a turn-off ultraviolet sensor could realize the detection of Cu2+ while as turn-on ultraviolet sensors could also realize the determination of Fe3+ and Cr2O72-, respectively. All results indicate that P9FG is a promising candidate for optical sensing.
2016, 34(2): 242-252
doi: 10.1007/s10118-016-1743-2
Abstract:
Herein we reported that ferrocene-containing polymers could be synthesized via acyclic diene metathesis (ADMET) polymerization of ferrocene-containing bis-styryl monomers. The all-trans-configured vinylene bonds of stilbene segment were proven by means of 13C-NMR, 1H-NMR, MALDI-TOF mass spectrometry and FTIR. Poly(1) showed maxima for absorption at 320 nm and emission at 430 nm which are structurally very similar to trans-stilbene, but 24 and 16 nm red shifted respectively. CIE chromaticity diagram shows that emission color could be adjusted by controlling the molecular weight. The polymer showed excellent solubility in common organic solvents and good thermal stability evidenced by TGA and DSC. The results of CV suggested the polymer possessed noninteracting metal centers which was confirmed by a reversible one-electron redox wave observed for the polymer.
Herein we reported that ferrocene-containing polymers could be synthesized via acyclic diene metathesis (ADMET) polymerization of ferrocene-containing bis-styryl monomers. The all-trans-configured vinylene bonds of stilbene segment were proven by means of 13C-NMR, 1H-NMR, MALDI-TOF mass spectrometry and FTIR. Poly(1) showed maxima for absorption at 320 nm and emission at 430 nm which are structurally very similar to trans-stilbene, but 24 and 16 nm red shifted respectively. CIE chromaticity diagram shows that emission color could be adjusted by controlling the molecular weight. The polymer showed excellent solubility in common organic solvents and good thermal stability evidenced by TGA and DSC. The results of CV suggested the polymer possessed noninteracting metal centers which was confirmed by a reversible one-electron redox wave observed for the polymer.