2015 Volume 33 Issue 12
2015, 33(12): 1633-1639
doi: 10.1007/s10118-015-1695-y
Abstract:
A series of cellulose 3,5-dimethylphenylcarbamates(CDMPCs) with different degrees of substitution(DS) and degrees of polymerization(DP) were homogeneously synthesized in 1-allyl-3-methylimidazolium chloride(AmimCl). Then, the CDMPCs were coated on silica gel and used as chiral stationary phases(CSPs), and their chiral recognition abilities for seven racemates were evaluated by high performance liquid chromatography. The results showed that DS and DP of CDMPCs had a great influence on chiral recognition abilities of the CSPs. The CSPs with the DS1 gives a low chiral recognition to most racemates. On the contrast, the CSPs with the DS2 exhibited high chiral separation abilities. For example, six racemates could be separated on the CSP with CDMPC of DS2(CSP-2). Especially, for the enantioseparation of 1-(2-naphthyl) ethanol and Trger's base, CSP-2 gave the highest separation ability in all of CSPs. On the other hand, when the DP of cellulose was in a range from 39 to 220, the chiral separation abilities of CDMPCs increased as the DP increased. This work demonstrates that the structure of cellulose esters such as DS and DP has important effect on their chiral separation ability, and therefore provides a practical method to design and prepare desirable CSPs for different racemates.
A series of cellulose 3,5-dimethylphenylcarbamates(CDMPCs) with different degrees of substitution(DS) and degrees of polymerization(DP) were homogeneously synthesized in 1-allyl-3-methylimidazolium chloride(AmimCl). Then, the CDMPCs were coated on silica gel and used as chiral stationary phases(CSPs), and their chiral recognition abilities for seven racemates were evaluated by high performance liquid chromatography. The results showed that DS and DP of CDMPCs had a great influence on chiral recognition abilities of the CSPs. The CSPs with the DS1 gives a low chiral recognition to most racemates. On the contrast, the CSPs with the DS2 exhibited high chiral separation abilities. For example, six racemates could be separated on the CSP with CDMPC of DS2(CSP-2). Especially, for the enantioseparation of 1-(2-naphthyl) ethanol and Trger's base, CSP-2 gave the highest separation ability in all of CSPs. On the other hand, when the DP of cellulose was in a range from 39 to 220, the chiral separation abilities of CDMPCs increased as the DP increased. This work demonstrates that the structure of cellulose esters such as DS and DP has important effect on their chiral separation ability, and therefore provides a practical method to design and prepare desirable CSPs for different racemates.
2015, 33(12): 1640-1649
doi: 10.1007/s10118-015-1703-2
Abstract:
A new series of cellulose-graft-poly(N-isopropylacrylamide)(cellulose-g-PNIPAM) copolymers were prepared by atom transfer radical polymerization(ATRP) of N-isopropylacrylamide monomers from a cellulose-based macro-initiator, which was homogeneously synthesized in an ionic liquid 1-allyl-3-methylimidazolium chloride(AmimCl). The composition of cellulose-g-PNIPAM copolymers could be adjusted by altering the feeding ratio and reaction time. The resultant copolymers with relatively high content of PNIPAM segments(molar substitution of PNIPAM18.3) were soluble in water at room temperature. Aqueous solutions of cellulose-g-PNIPAM copolymers exhibited clear temperature-sensitive behavior, and their sol-to-gel phase transition properties were investigated by dynamic light scattering(DLS) and UV measurements. Compared with pure PNIPAM, the cellulose-g-PNIPAM copolymers possessed higher lower critical solution temperatures(LCST) in a range from 36.9℃ to 40.8℃, which are close to normal human body temperature, and could be tuned by adjusting the content of PNIPAM segments in copolymers. Spherical structure of cellulose-g-PNIPAM copolymers formed at temperatures above LCST and its morphology was observed by TEM and SEM. These novel cellulose-g-PNIPAM copolymers may be attractive substrates for some biomedical applications, such as drug release and tissue engineering.
A new series of cellulose-graft-poly(N-isopropylacrylamide)(cellulose-g-PNIPAM) copolymers were prepared by atom transfer radical polymerization(ATRP) of N-isopropylacrylamide monomers from a cellulose-based macro-initiator, which was homogeneously synthesized in an ionic liquid 1-allyl-3-methylimidazolium chloride(AmimCl). The composition of cellulose-g-PNIPAM copolymers could be adjusted by altering the feeding ratio and reaction time. The resultant copolymers with relatively high content of PNIPAM segments(molar substitution of PNIPAM18.3) were soluble in water at room temperature. Aqueous solutions of cellulose-g-PNIPAM copolymers exhibited clear temperature-sensitive behavior, and their sol-to-gel phase transition properties were investigated by dynamic light scattering(DLS) and UV measurements. Compared with pure PNIPAM, the cellulose-g-PNIPAM copolymers possessed higher lower critical solution temperatures(LCST) in a range from 36.9℃ to 40.8℃, which are close to normal human body temperature, and could be tuned by adjusting the content of PNIPAM segments in copolymers. Spherical structure of cellulose-g-PNIPAM copolymers formed at temperatures above LCST and its morphology was observed by TEM and SEM. These novel cellulose-g-PNIPAM copolymers may be attractive substrates for some biomedical applications, such as drug release and tissue engineering.
2015, 33(12): 1650-1660
doi: 10.1007/s10118-015-1719-7
Abstract:
The example of the preparation of nano- and micro-scaled, coral-shaped and core-shell topological morphology of copolyethylene particles promoted by the novel heterogeneous non-metallocene catalyst(m-CH3PhO)TiCl3/carbon nanotubes(CNTs) was reported. Mass fraction of titanium component of the catalyst was 4.0 wt% determined by ICP analysis. The catalyst system can effectively catalyze polymerization of ethylene and copolymerization of ethylene with 1-hexene. Morphological examination of the obtained polymer particles was carried out by scanning electron microscope(SEM) and high resolution transmission electron microscope(HR-TEM) technique. The results revealed that the morphology of the nascent copolyethylene particles looked like coral shape with size in micro-scaled and featured the core-shell structure consisting of CNTs as the core and copolyethylene as the shell.
The example of the preparation of nano- and micro-scaled, coral-shaped and core-shell topological morphology of copolyethylene particles promoted by the novel heterogeneous non-metallocene catalyst(m-CH3PhO)TiCl3/carbon nanotubes(CNTs) was reported. Mass fraction of titanium component of the catalyst was 4.0 wt% determined by ICP analysis. The catalyst system can effectively catalyze polymerization of ethylene and copolymerization of ethylene with 1-hexene. Morphological examination of the obtained polymer particles was carried out by scanning electron microscope(SEM) and high resolution transmission electron microscope(HR-TEM) technique. The results revealed that the morphology of the nascent copolyethylene particles looked like coral shape with size in micro-scaled and featured the core-shell structure consisting of CNTs as the core and copolyethylene as the shell.
2015, 33(12): 1661-1671
doi: 10.1007/s10118-015-1710-3
Abstract:
Homogeneous chitosan-silk fibroin/hydroxyapatite(CS-SF/HA) composites were prepared by in situ precipitation method driven by a multiple-order template. The morphology of the composites was investigated by scanning electron microscope(SEM) and transmission electron microscope(TEM). The compositional analysis was carried out by X-ray diffraction analysis(XRD) and Fourier transformed infrared spectroscopy(FTIR). The mechanical properties and biocompatibility of the composites were also determined. The results indicated that the inorganic particles of uniform size(50 nm) were well-dispersed among the CS-SF matrices. The compressive modulus of the CS-SF/HA composites was enhanced with the increasing amount of SF. The in vitro results suggested that the MC3T3-E1 osteoblast-like cells on CS-SF/HA composite disks displayed strong bonding and spreading, and the cell proliferation cultured on each composite disk increased throughout the culture period for up to 7 days. Especially, the samples with higher content of SF had much better biological properties. The evidences proved that the CS-SF/HA composites possessed excellent biocompatibility. By using the freeze-drying technique, hierarchical porous scaffolds with pores ranging from 50m to 200m were obtained. This work presented the advantages of in situ precipitation method to prepare the organic/inorganic composites, and a multiple-order template was introduced in the system to improve the properties of the composites by combining the merits of each organic template.
Homogeneous chitosan-silk fibroin/hydroxyapatite(CS-SF/HA) composites were prepared by in situ precipitation method driven by a multiple-order template. The morphology of the composites was investigated by scanning electron microscope(SEM) and transmission electron microscope(TEM). The compositional analysis was carried out by X-ray diffraction analysis(XRD) and Fourier transformed infrared spectroscopy(FTIR). The mechanical properties and biocompatibility of the composites were also determined. The results indicated that the inorganic particles of uniform size(50 nm) were well-dispersed among the CS-SF matrices. The compressive modulus of the CS-SF/HA composites was enhanced with the increasing amount of SF. The in vitro results suggested that the MC3T3-E1 osteoblast-like cells on CS-SF/HA composite disks displayed strong bonding and spreading, and the cell proliferation cultured on each composite disk increased throughout the culture period for up to 7 days. Especially, the samples with higher content of SF had much better biological properties. The evidences proved that the CS-SF/HA composites possessed excellent biocompatibility. By using the freeze-drying technique, hierarchical porous scaffolds with pores ranging from 50m to 200m were obtained. This work presented the advantages of in situ precipitation method to prepare the organic/inorganic composites, and a multiple-order template was introduced in the system to improve the properties of the composites by combining the merits of each organic template.
2015, 33(12): 1672-1682
doi: 10.1007/s10118-015-1713-0
Abstract:
Potassium methyl siliconate(PMS) was investigated as a simple physicochemical modification in aged paper using silane coupling technique. The PMS-based solution was shown to favor penetration in the cellulose fibers on the paper with suitable uptakes being achieved at low concentrations. The studies of the physicochemical properties of the treated paper(mechanical strength and alkalinity) demonstrated that, besides the required deacidification feature and high level of alkali reserves, the immersion treatment by PMS allowed the enhancement of the mechanical intensities of paper arising from the interaction between Si-OH generated in hydrolysis of PMS and C-OH of cellulose on the paper. Adding ethanol into PMS solution could significantly improve mechanical properties of the aged paper treated by the formula apart from modifying the flatness of the paper. Optimized treatment process was achieved by altering the ratio of ethanol to water in PMS-based solutions. Contact angle measurements indicated the occurrence of hydrophobic character of the papers in immersion treatment with PMS-based solutions. The easy availability of the materials and simplicity of the method rendered it convenient for treatment for aged paper documents.
Potassium methyl siliconate(PMS) was investigated as a simple physicochemical modification in aged paper using silane coupling technique. The PMS-based solution was shown to favor penetration in the cellulose fibers on the paper with suitable uptakes being achieved at low concentrations. The studies of the physicochemical properties of the treated paper(mechanical strength and alkalinity) demonstrated that, besides the required deacidification feature and high level of alkali reserves, the immersion treatment by PMS allowed the enhancement of the mechanical intensities of paper arising from the interaction between Si-OH generated in hydrolysis of PMS and C-OH of cellulose on the paper. Adding ethanol into PMS solution could significantly improve mechanical properties of the aged paper treated by the formula apart from modifying the flatness of the paper. Optimized treatment process was achieved by altering the ratio of ethanol to water in PMS-based solutions. Contact angle measurements indicated the occurrence of hydrophobic character of the papers in immersion treatment with PMS-based solutions. The easy availability of the materials and simplicity of the method rendered it convenient for treatment for aged paper documents.
2015, 33(12): 1683-1690
doi: 10.1007/s10118-015-1722-z
Abstract:
The effects of magnesium oxide(MgO) on the flame retardant performance of intumescent systems based on ammonium polyphosphate(APP) and pentaerythritol(PER) in ethylene vinyl acetate copolymer(EVA) were studied. The results showed that MgO affects both the quality and quantity of residual char. There is an optimal value for the loading amount of MgO. More or less MgO loading may cause the formation of defective char layers and worsen the flame retardancy of EVA. According to the results of limiting oxygen index(LOI), vertical flammability test(UL94 rating) and cone calorimetry(CONE), the best flame retardancy with a strong and well intumescent char is obtained from the sample with 1 wt% of MgO, which has the highest LOI value of 27.9, UL94 rating of V-0 and the lowest peak heat release rate of 242 kWm-2.
The effects of magnesium oxide(MgO) on the flame retardant performance of intumescent systems based on ammonium polyphosphate(APP) and pentaerythritol(PER) in ethylene vinyl acetate copolymer(EVA) were studied. The results showed that MgO affects both the quality and quantity of residual char. There is an optimal value for the loading amount of MgO. More or less MgO loading may cause the formation of defective char layers and worsen the flame retardancy of EVA. According to the results of limiting oxygen index(LOI), vertical flammability test(UL94 rating) and cone calorimetry(CONE), the best flame retardancy with a strong and well intumescent char is obtained from the sample with 1 wt% of MgO, which has the highest LOI value of 27.9, UL94 rating of V-0 and the lowest peak heat release rate of 242 kWm-2.
2015, 33(12): 1691-1701
doi: 10.1007/s10118-015-1721-0
Abstract:
Using the continuum self-consistent field theory(SCFT), the adsorption of flexible symmetrical triblock polymers onto the surfaces of two identical parallel planes immersed in a neutral solution was studied. The effects of various parameters, such as the interface adhesive energy, the polymer composition and the bulk polymer concentration, on the conformations and total adsorption amount of polymers were explored. It was found that the dependence of the amount of bridges on the interface adhesion and that of the amount of tails on the length of adhesive blocks were both non-monotonous. The amounts of the four chain conformations scaled nearly linearly to the copolymer bulk concentration. The non-equivalence of the dependence of the adsorbed structure behaviors on the interface affinity and the length of sticky blocks was revealed as well.
Using the continuum self-consistent field theory(SCFT), the adsorption of flexible symmetrical triblock polymers onto the surfaces of two identical parallel planes immersed in a neutral solution was studied. The effects of various parameters, such as the interface adhesive energy, the polymer composition and the bulk polymer concentration, on the conformations and total adsorption amount of polymers were explored. It was found that the dependence of the amount of bridges on the interface adhesion and that of the amount of tails on the length of adhesive blocks were both non-monotonous. The amounts of the four chain conformations scaled nearly linearly to the copolymer bulk concentration. The non-equivalence of the dependence of the adsorbed structure behaviors on the interface affinity and the length of sticky blocks was revealed as well.
2015, 33(12): 1702-1712
doi: 10.1007/s10118-015-1714-z
Abstract:
Poly(propylene carbonate)(PPC) was blended with polylactide(PLA) and poly(1,2-propylene glycol adipate)(PPA) using a twin screw extruder. Then the PPC/PLA/PPA films were prepared using the blown film technique. DMA results showed that PPA could act as a plasticizer and improve the miscibility between PPC and PLA. Crystal morphology displayed that blending PLA with the amorphous PPC led to a decrease of the spherulite size of PLA. The results of mechanical tests indicated that PPC-rich films showed high elongation at break and PLA-rich films showed high tear strength and good optical properties. The content of PPC and PLA significantly affected the physical properties of the films. With increasing PPC content, the melt strengths of the PPC/PLA/PPA films were enhanced. These findings contributed to the biodegradable materials application for designing and manufacturing polymer packaging.
Poly(propylene carbonate)(PPC) was blended with polylactide(PLA) and poly(1,2-propylene glycol adipate)(PPA) using a twin screw extruder. Then the PPC/PLA/PPA films were prepared using the blown film technique. DMA results showed that PPA could act as a plasticizer and improve the miscibility between PPC and PLA. Crystal morphology displayed that blending PLA with the amorphous PPC led to a decrease of the spherulite size of PLA. The results of mechanical tests indicated that PPC-rich films showed high elongation at break and PLA-rich films showed high tear strength and good optical properties. The content of PPC and PLA significantly affected the physical properties of the films. With increasing PPC content, the melt strengths of the PPC/PLA/PPA films were enhanced. These findings contributed to the biodegradable materials application for designing and manufacturing polymer packaging.
2015, 33(12): 1713-1720
doi: 10.1007/s10118-015-1715-y
Abstract:
In this study, the poly(L-lactide)/poly(D-lactide)(PLLA/PDLA) blends with different optical purities of PLLA and various molecular weights of PDLA are prepared by solution mixing, and the stereocomplex formation and phase separation behaviors of these blends are investigated. Results reveal that optical purity and molecular weight do not vary the crystal structure of PLA stereocomplex(sc) and homochiral crystallites(hc). As the optical purity increasing in the blends, the melting temperature of sc(Tsc) and the content of sc(Hsc) increased, while the melting temperature of hc(Thm) hardly changes, although the content of hc(Hhm) decreased gradually. The Tsc and Hsc are also enhanced as the molecular weight of PDLA reduces, and the Hhm reduces rapidly even though the Thm does not vary apparently. With lower optical purities of PLLA and higher molecular weights of PDLA, three types of crystals form in the blends, i.e., PLA sc, PLLA hc and PDLA hc. As molecular weight decreases and optical purity enhances, the crystal phase decreases to two(sc and PDLA hc), and one(sc) finally. This investigation indicates that the phase separation behavior between PLLA and PDLA in the PLLA/PDLA blends not only depends on molecular weights, but also relies on the optical purities of polymers.
In this study, the poly(L-lactide)/poly(D-lactide)(PLLA/PDLA) blends with different optical purities of PLLA and various molecular weights of PDLA are prepared by solution mixing, and the stereocomplex formation and phase separation behaviors of these blends are investigated. Results reveal that optical purity and molecular weight do not vary the crystal structure of PLA stereocomplex(sc) and homochiral crystallites(hc). As the optical purity increasing in the blends, the melting temperature of sc(Tsc) and the content of sc(Hsc) increased, while the melting temperature of hc(Thm) hardly changes, although the content of hc(Hhm) decreased gradually. The Tsc and Hsc are also enhanced as the molecular weight of PDLA reduces, and the Hhm reduces rapidly even though the Thm does not vary apparently. With lower optical purities of PLLA and higher molecular weights of PDLA, three types of crystals form in the blends, i.e., PLA sc, PLLA hc and PDLA hc. As molecular weight decreases and optical purity enhances, the crystal phase decreases to two(sc and PDLA hc), and one(sc) finally. This investigation indicates that the phase separation behavior between PLLA and PDLA in the PLLA/PDLA blends not only depends on molecular weights, but also relies on the optical purities of polymers.
2015, 33(12): 1721-1729
doi: 10.1007/s10118-015-1726-8
Abstract:
In this manuscript, an easy method of anchoring Au nanoparticles onto a polypropylene(PP) membrane to prepare a composite Au-PP membrane with catalytic activity was demonstrated. The surface of the PP membrane was first modified with a primary amine by mussel-inspired dopamine polymerization. Then, the modified PP membrane was used to reduce chloroauric acid to anchor Au nanoparticles onto the surface, forming a Au-PP membrane. The surface morphology and composition of the modified PP membrane were characterized with SEM, ATR-FTIR and XPS. The catalytic activity of the Au-PP membrane was also evaluated by the degradation of a model dye solution of methylene blue. The fabricated membrane shows excellent catalytic performance, and the catalytic activity can be effectively regenerated.
In this manuscript, an easy method of anchoring Au nanoparticles onto a polypropylene(PP) membrane to prepare a composite Au-PP membrane with catalytic activity was demonstrated. The surface of the PP membrane was first modified with a primary amine by mussel-inspired dopamine polymerization. Then, the modified PP membrane was used to reduce chloroauric acid to anchor Au nanoparticles onto the surface, forming a Au-PP membrane. The surface morphology and composition of the modified PP membrane were characterized with SEM, ATR-FTIR and XPS. The catalytic activity of the Au-PP membrane was also evaluated by the degradation of a model dye solution of methylene blue. The fabricated membrane shows excellent catalytic performance, and the catalytic activity can be effectively regenerated.
2015, 33(12): 1730-1740
doi: 10.1007/s10118-015-1716-x
Abstract:
Using the porous polypropylene(PP) granules consisting of submicroparticles prepared by the reactor granular technology(RGT), a facile process was developed to synthesize in situ polypropylene/silica nanocomposites where styrene-alt-maleic anhydride copolymers(PSM) were firstly grafted onto both the outer- and the inner-pore surfaces of PP granules via solid-phase grafting polymerization, and then a sol-gel reaction was conducted inside these micro-pores with the carboxyl acid derived from maleic anhydride as catalyst. TEM micrographs demonstrated that the silica nanoparticles obtained by this strategy had a size around 10-20 nm in diameter and uniformly dispersed in the PSM-based nanocomposites. More importantly, the silica nanoparticles could significantly reduce the size of PP spherulites. Consequently, the PP/silica nanocomposites with high transparency and good mechanical performance were achieved.
Using the porous polypropylene(PP) granules consisting of submicroparticles prepared by the reactor granular technology(RGT), a facile process was developed to synthesize in situ polypropylene/silica nanocomposites where styrene-alt-maleic anhydride copolymers(PSM) were firstly grafted onto both the outer- and the inner-pore surfaces of PP granules via solid-phase grafting polymerization, and then a sol-gel reaction was conducted inside these micro-pores with the carboxyl acid derived from maleic anhydride as catalyst. TEM micrographs demonstrated that the silica nanoparticles obtained by this strategy had a size around 10-20 nm in diameter and uniformly dispersed in the PSM-based nanocomposites. More importantly, the silica nanoparticles could significantly reduce the size of PP spherulites. Consequently, the PP/silica nanocomposites with high transparency and good mechanical performance were achieved.
2015, 33(12): 1741-1749
doi: 10.1007/s10118-015-1717-9
Abstract:
In this report, bienzymatic crosslinking approach was applied to prepare biopolymer hydrogel fibers composed of gelatin and chitosan with an interpenetrating polymer network(IPN) structure. The IPN biopolymer hydrogel fibers were prepared by wet spinning while microbial transglutaminase(mTG) catalyzed the formation of one network of gelatin and horseradish peroxidase(HRP) in the presence of H2O2 induced another network of chitosan grafted with phloretic acid(chitosan-PA) intertwining with the former. The mechanical performances of the hydrogel fibers were measured by an electronic single fiber strength tester. It was found that the mechanical properties of the gelatin/chitosan IPN hydrogel fibers had a significant improvement with the increase of the concentration of gelatin and chitosan, and the IPN fiber has the highest tension of 38.6 cN and elongation of 387.2%. Accelerated degradation in the presence of papin indicated that the gelatin/chitosan-PA IPN hydrogel fibers own controllable degradability. In addition, biological evaluation indicated the IPN hydrogel fibers can support cell adhesion and proliferation. Moreover, hand weaving trail showed the knittablity of the IPN hydrogel fibers. Therefore, the gelatin/chitosan IPN hydrogel fibers prepared by bienzymatic crosslinking approach possess excellent biocompatibility and mechanical strength, which may be desirable candidates for engineering tissue scaffolds.
In this report, bienzymatic crosslinking approach was applied to prepare biopolymer hydrogel fibers composed of gelatin and chitosan with an interpenetrating polymer network(IPN) structure. The IPN biopolymer hydrogel fibers were prepared by wet spinning while microbial transglutaminase(mTG) catalyzed the formation of one network of gelatin and horseradish peroxidase(HRP) in the presence of H2O2 induced another network of chitosan grafted with phloretic acid(chitosan-PA) intertwining with the former. The mechanical performances of the hydrogel fibers were measured by an electronic single fiber strength tester. It was found that the mechanical properties of the gelatin/chitosan IPN hydrogel fibers had a significant improvement with the increase of the concentration of gelatin and chitosan, and the IPN fiber has the highest tension of 38.6 cN and elongation of 387.2%. Accelerated degradation in the presence of papin indicated that the gelatin/chitosan-PA IPN hydrogel fibers own controllable degradability. In addition, biological evaluation indicated the IPN hydrogel fibers can support cell adhesion and proliferation. Moreover, hand weaving trail showed the knittablity of the IPN hydrogel fibers. Therefore, the gelatin/chitosan IPN hydrogel fibers prepared by bienzymatic crosslinking approach possess excellent biocompatibility and mechanical strength, which may be desirable candidates for engineering tissue scaffolds.
2015, 33(12): 1750-1756
doi: 10.1007/s10118-015-1718-8
Abstract:
The rheological properties of two specific waterborne polyurethane(PU) paints were studied by both macrorheological and microrheological methods. During the macrorheological measurement on a rotary rheometer, evaporation of solvent cannot be totally excluded, which has an influence on the reliability of rheological results. So, the linear oscillatory frequency sweep results(storage and loss modulus versus frequency) and steady shear results(viscosity versus shear rate) got from the rotary rheometer measurement are only used for qualitative analysis. As the evaporation of solvent can be neglected during microrheological measurements on a diffusing wave spectroscope(DWS), the results of storage modulus(G') and loss modulus(G) versus frequency are more credible than the results obtained from the rotary rheometer measurement. Thus, the results of G' and G versus frequency from DWS measurements are used for quantitative analysis in this work. The G' for both of the waterborne PU paints are larger than G at low frequency and that is opposite at high frequency in the experimental angular frequency range. The values of modulus at same frequency and viscosity at low shear rate for the two PU paints have apparent difference, which determines the difference of their application.
The rheological properties of two specific waterborne polyurethane(PU) paints were studied by both macrorheological and microrheological methods. During the macrorheological measurement on a rotary rheometer, evaporation of solvent cannot be totally excluded, which has an influence on the reliability of rheological results. So, the linear oscillatory frequency sweep results(storage and loss modulus versus frequency) and steady shear results(viscosity versus shear rate) got from the rotary rheometer measurement are only used for qualitative analysis. As the evaporation of solvent can be neglected during microrheological measurements on a diffusing wave spectroscope(DWS), the results of storage modulus(G') and loss modulus(G) versus frequency are more credible than the results obtained from the rotary rheometer measurement. Thus, the results of G' and G versus frequency from DWS measurements are used for quantitative analysis in this work. The G' for both of the waterborne PU paints are larger than G at low frequency and that is opposite at high frequency in the experimental angular frequency range. The values of modulus at same frequency and viscosity at low shear rate for the two PU paints have apparent difference, which determines the difference of their application.