【无机化学学报】doi: 10.11862/CJIC.20230289
采用气固法制备了磷化钼-碳纳米花(MoP-CFs),通过简单的超声自组装将C60修饰在MoP-CFs表面,形成范德瓦耳斯异质结。研究其电催化析氢性能发现,C60的修饰能够有效降低电催化析氢过电位。其中,10% C60-MoP-CFs样品(10%为C60的质量分数)表现出最佳催化活性,在酸性和碱性条件下达到10 mA·cm-2的电流密度时,所需要的过电位分别为158和157 mV,并且具有至少20 h的电催化稳定性。C60与MoP-CFs之间强电子耦合作用促进电子由C60迁移到MoP-CFs表面,有助于减小电荷传输阻力,加快电催化析氢界面反应动力学过程。
【物理化学学报】doi: 10.3866/PKU.WHXB202306003
将当前能源生产和消费结构从过度依赖化石能源转变为高效利用可再生能源,是解决能源危机、实现碳中和的有效途径。生物质是最有前途的可再生能源之一,可以取代化石燃料以获得有价值的有机化合物。近年来,大力利用生物质能已成为一种必然趋势。用于生物质转化的传统热化学催化方法通常需要高温、高压等恶劣条件,甚至还需要外部氢或氧源。相比之下,在相对温和的条件下进行的生物质有机分子电催化转化为生产高价值化学品提供了一种绿色高效的策略。特别是,通过C―C键裂解将生物质衍生的分子转化为高价值的短链化学品至关重要。近年来,大量的研究证明过渡金属(TM)电催化剂由于其丰富的三维电子结构和独特的eg轨道增强了过渡金属-氧之间的共价键合,从而在有机物的C―C键断裂中起着至关重要的作用。此外,TM电催化剂的配位环境或电子结构会影响产物的选择性。毫无疑问,明确的反应活性位点和途径有助于深入理解催化剂结构与反应活性之间的构效关系。然而,TM电催化剂介导的生物质衍生有机分子的C―C键裂解反应用于生物质升级的研究目前尚处于起步阶段,其反应机理和催化反应过程尚不清楚。因此,有必要在原子水平上系统地了解电催化剂在C―C键裂解过程中的作用。在本综述中,我们首先依次介绍了广泛研究的TM电催化剂介导的生物质衍生有机分子(包括甘油、环己醇、木质素和糠醛)的C―C键裂解反应,并给出了一些典型的例子和相应的反应途径。然后,系统回顾了过渡金属化合物催化C―C键裂解的反应机理,揭示了界面行为,并构建了TM电催化剂的结构与裂解反应活性之间的构效关系。最后,我们简要总结了上述内容,并强调了在TM电催化剂上研究C―C键裂解的挑战和展望。我们期望这项工作可以为生物质的可控转化和合理设计C―C键裂解的TM电催化剂提供指导。
【无机化学学报】doi: 10.11862/CJIC.20230477
采用原位溶剂热反应制备多级Ag/Bi/Nv-g-C3N4(氮空位-g-C3N4)/Ti3C2Tx肖特基结,并对其物相组成和晶体结构、微观形貌和孔结构、表面元素组成和化学态、光学和光电化学性质进行了表征。由于Ag、Bi和Ti3C2Tx协同的表面等离激元共振效应,Ag/Bi/Nv-g-C3N4/Ti3C2Tx表现出全光谱吸收特性。由载流子浓度差驱动的界面极化电荷转移诱导形成的肖特基结,显著提高了光生载流子(包括热电子和热空穴)的分离效率和利用率。因此,与Nv-g-C3N4、Ti3C2Tx、Ag/Nv-g-C3N4、Bi/Nv-g-C3N4和Ag/Bi/Nv-g-C3N4相比,Ag/Bi/Nv-g-C3N4/Ti3C2Tx表现出显著增强的全光谱催化活性,其在可见光和近红外光照射下光催化降解四环素的反应速率常数分别为0.033和0.008 6 min-1,为对比样品的10~2.1倍和8.6~1.8倍。
【大学化学】doi: 10.12461/PKU.DXHX202403087
通过自由基途径的烯烃1,2-双官能团化反应是有机合成中从烯烃直接构建C—X (X = C, N, O…)键的重要手段,其优点包括良好的区域选择性、步骤经济性和原子经济性,符合绿色化学的发展要求。含有碳-氧键的有机功能化合物种类很多,发展简单高效构建碳-氧键的合成方法是有机化学家广泛关注的研究领域。本文综述了在构建碳-氧键的同时,构建碳-碳键、碳-氮键、碳-硫键和碳-卤键的反应研究进程,并对该领域的未来发展方向进行了展望。
【物理化学学报】doi: 10.3866/PKU.WHXB202305047
利用取之不尽的太阳能资源进行光催化水裂解制氢是缓解全球能源危机、实现碳中和战略的一项有前景的技术。石墨相氮化碳(g-C3N4)因成本低且稳定性高在光催化产氢领域备受关注。然而,纯g-C3N4存在表面积小、电子转移慢、光生载流子复合快等缺陷,产氢性能通常不佳。本研究通过直接热解硫酸铵和三聚氰胺混合物,成功实现硫物种对g-C3N4氮位点的原位取代,开发出一种高效的硫掺杂g-C3N4 (S-g-CN)光催化剂。系列结构和光谱表征证实硫的成功掺杂。密度泛函理论的第一性原理计算表明S活性位对氢的吸附吉布斯自由能近乎为零(~0.26 eV),揭示S掺杂在优化H活性中间体吸附和解吸过程中起着重要作用。透射电子显微镜和原子力显微镜测试结果表明,S-g-CN具有超薄的纳米片状结构,其片层厚度约为2.5 nm。随后的氮气吸脱附等温线和光电化学性质测试结果表明,S掺杂不仅可显著增大g-C3N4比表面积,而且还能有效提高其光生电子-空穴对的转移、分离和氧化还原能力。得益于材料良好的结构特性,S-g-CN的光催化产氢速率高达4923 μmol∙g−1∙h−1,是原始g-C3N4的28倍,超越诸多最近报道的其它S掺杂g-C3N4光催化剂。而且,S-g-CN的表观量子效率高达3.64%。本研究除了开发一种高效的光催化剂,还将为高性能g-C3N4基催化剂的设计提供有益借鉴。
【物理化学学报】doi: 10.3866/PKU.WHXB202408005
化石燃料的燃烧导致CO2排放量显著增大,对环境构成严重威胁。光催化CO2还原是减少全球变暖的重要手段,本文探讨了石墨相氮化碳(g-C3N4)在此领域中的潜在应用。然而,光生载流子的复合较快、可见光吸收能力差以及缺乏活性位点等关键因素限制了g-C3N4的光催化CO2还原活性。为了解决这些问题,人们采用了多种改性策略,包括调整g-C3N4的形貌(如量子点、纳米棒、纳米管、纳米片、空心球等),掺杂不同类型原子,以及与其他半导体复合形成异质结。g-C3N4作为光催化剂已展现出光催化还原CO2的潜力,但仍需进一步研究和创新,本文重点讨论了S型异质结在提高g-C3N4光催化CO2还原性能方面的作用,以克服其当前催化剂开发及应用的局限性。
【无机化学学报】doi: 10.11862/CJIC.20240086
制备了Ag负载于质子化g-C3N4(pCN)的纳米棒材料(Ag/pCN),对比了g-C3N4(CN)、表面负载Ag的CN(Ag/CN)、pCN和Ag/pCN在可见光条件下光催化降解亚甲蓝(MB)溶液的效果。结果表明,Ag/pCN光催化效率最高(92.63%),并且具有良好的稳定性;通过光电流-时间(I-t)曲线、Nyquist曲线、Mott-Schokkty曲线和捕获实验探究了Ag/pCN光催化降解MB的机理:虽然pCN的π共轭体系较CN发生变化,但由于形成了纳米棒,其比表面积的增加以及Ag负载的协同效应致使Ag/pCN具有优异的光催化性能。光催化过程中羟基自由基(·OH)是起主要作用的活性物质,其由光生电子(e-)与表面吸附的O2反应产生以及光生空穴(h+)与H2O或OH-反应产生。
【无机化学学报】doi: 10.11862/CJIC.20240115
利用K+、Cl-共掺杂来优化纳米Li2FeSiO4/C正极材料的结构及电化学性能,通过固相反应制备了纳米Li2-xKxFeSiO4-0.5xClx/C (x=0、0.01、0.02)正极材料。采用X射线衍射、扫描电子显微镜、透射电子显微镜、X射线光电子能谱和恒电流充放电等对比研究了3种正极材料的微观结构特征和电化学性能。研究表明纳米Li1.99K0.01FeSiO3.995Cl0.01/C正极材料的晶面间距和晶胞体积最大,颗粒粒径最小,平均粒径为32 nm。这些特定的微观结构使其表现出最优的电化学性能。纳米Li1.99K0.01FeSiO3.995Cl0.01/C在0.1C下的首次放电比容量高达203 mAh·g-1,在1C下充放电循环100次的容量保持率为97.72%。
【无机化学学报】doi: 10.11862/CJIC.20240384
以过硫酸铵引发吡咯单体原位聚合形成的三维多孔气凝胶为载体,以二茂铁为金属前驱体,在氩气气氛下通过高温热解法制备出系列不同铁负载量的Fe/N/C催化剂。结果表明,基于气凝胶载体制备的催化剂在酸性介质中展现出优异的氧还原反应(ORR)活性及稳定性。当二茂铁载量为12 mg时制得的催化剂性能最佳,其半波电位达0.691 V(vs RHE),平均电子转移数为3.97,表明反应过程接近理想的四电子路径。另外,该催化剂经10 000圈循环伏安测试后,半波电位仅衰减11 mV,展现出较好的电化学耐久性。
【物理化学学报】doi: 10.3866/PKU.WHXB202310024
锂浆料电池(LSSFBs)具有应用于大规模储能系统的潜力。然而,LSSFBs的电化学性能受限于活性材料本征导电性差以及活性材料与导电添加剂之间的不稳定接触。本文设计了碳包覆的二氧化锡/多壁碳纳米管(C-SnO2/MWCNTs)复合材料作为LSSFBs负极材料。在该复合材料中,SnO2纳米颗粒均匀分布在(MWCNTs)表面,同时SnO2颗粒外表进行碳包覆。纳米尺寸赋予SnO2更多反应活性位点。此外,碳纳米管和碳包覆层共同构建稳定的导电网络。这种导电网络有效改善SnO2的电子转移动力学,并抑制其在充/放电过程中的体积膨胀,从而提高倍率和循环性能。此外,MWCNTs增强浆料电极的悬浮稳定性。这些优势赋予LSSFBs良好的倍率和循环性能。这项工作为优化LSSFBs的浆料电极提供了一种具有前景的策略。
出版年份
相关作者
相关热词
- 首页
- 上一页
- 1
- 2
- 3
- 4
- 下一页
- 末页
- 共:4页
- 跳转
- Go