【物理化学学报】doi: 10.3866/PKU.WHXB202308020
采用同源金属V2CFx MXene作为前驱体制备了三氧化二钒@多孔碳(V2O3@porous carbon,V2O3@PC)纳米片作为电容去离子(CDI)阳极,研究其脱盐特性。实验探究了在不同在碳化温度下V2O3@PC的结构、结晶度、润湿性、石墨化程度和电化学特性。研究表明,所制备的V2O3@PC呈现出典型的2D纳米片结构,高结晶度的V2O3纳米颗粒被高石墨化度的PC牢牢束缚。这种结构具有良好的界面润湿性和高导电性,因而可以促进电解质的渗透,加速界面电荷的转移以并促进盐离子的传输和扩散。此外,PC也能较好的抑制V2O3在多次循环后的体积膨胀。电化学结果表明,V的可逆电化学转化在一定程度上提高了Na+的储存。当电压为1.2 V时,NaCl电导率为1000 μS·cm−1时,优化后的V2O3@PC电极具有高达2.20 mmol∙g−1的脱盐容量,0.13 mmol∙g−1∙min−1的脱盐速率,62%的水回收率以及24.0 Wh∙m−3的低能耗。
【大学化学】doi: 10.12461/PKU.DXHX202406032
学术界在表述环加成反应时,(m + n + …)和[m + n + …]环加成混用,不利于准确的学术交流。本文介绍了国际纯粹与应用化学联合会(IUPAC)规定的两种环加成反应表述方式,指明了它们的准确含义和使用环境。
【无机化学学报】doi: 10.11862/CJIC.20240326
通过较为简单的水热法制备了V掺杂MnO2(VMO),并研究了其作为水系锌离子电池(ZIB)正极材料的电化学性能。材料表征和电化学性能结果表明V被均匀地掺杂到MnO2中。V掺杂不仅扩大了MnO2的层间距,增加了比表面积,还提高了其内部离子电导率。组装成的ZIB在电流密度为0.1 A·g-1的条件下,初始放电容量可达362 mAh·g-1。V的掺杂使MnO2的晶格结构更加稳定,Jahn-Teller畸变效应减弱,电极材料的结构稳定性提高。当电流密度为1 A·g-1时,经过300圈的充放电循环后,其放电容量仍然能够达到初始容量的87%。
【无机化学学报】doi: 10.11862/CJIC.20240210
以V2O5/TiO2催化剂为基体,制备了一系列Ce、Mn改性催化剂,并结合氮气吸附-脱附、X射线衍射、X射线光电子能谱、扫描电子显微镜分析了催化剂的结构及活性组成,探究了其反应活性。结果表明,制备的改性V2O5/TiO2催化剂分散性好,Ce-Mn双金属改性提高了催化剂的NH3转化率和N2选择性。Ce、Mn负载量(Ce或Mn与TiO2的质量比)分别为8%、6%时,310℃下改性材料的NH3转化率为100%,N2选择性为78%。原位漫反射傅里叶变换红外光谱表征显示催化剂表面羟基吸附的NH3会优先参与反应,温度升高后催化剂表面的Brønsted和Lewis酸位点上吸附的NH3开始参与反应,较高温度下Lewis酸位点是主要的NH3转化位点。
【物理化学学报】doi: 10.3866/PKU.WHXB202407023
钠离子电池被广泛研究用于储能应用,但实现同时具有高能量密度、稳定性和快速充放电性能的正极材料仍然是一个关键的挑战。本研究合成了一系列NASICON型Na3.5−xMn0.5V1.5−xZrx(PO4)3/C材料,并掺入Mn、V和Zr元素探讨其对电化学性能的影响。通过在Mn和V的基础上引入Zr,提出一种激活V4+/V5+氧化还原反应新的策略,从而提升能量密度。此外,Zr掺入通过拓宽离子通道并产生额外的钠离子空位,显著促进钠离子迁移,增强电极反应动力学和整体性能。结果表明,Na3.4Mn0.5V1.4Zr0.1(PO4)3/C材料表现出优异的循环稳定性,在800次循环后保持90%的容量,并具备高倍率性能(20C时,放电比容量为84 mAh∙g−1),显著优于原始的Na3.5Mn0.5V1.5(PO4)3/C材料。该研究为开发高效且可持续钠离子电池提供了有效途径。
【大学化学】doi: 10.12461/PKU.DXHX202412022
以p-V图的绘制为例,在物理化学教学中展开项目式教学。设计(等温/绝热/多方)可逆过程p-V图和绝热可逆过程与绝热不可逆过程p-V图的绘制两个任务,指导学生从不同角度分析问题、解决问题。学生在团队合作中体会抓住事物本质解决问题的必要性;并且,学生的团队协作精神、思维深度和分析解决问题的能力也得到进一步提升。
【物理化学学报】doi: 10.1016/j.actphy.2025.100180
Na3V2(PO4)3 (NVP)因其NASICON型框架结构可实现高效可逆的钠离子脱嵌,因此被认为是一种极具前景的钠离子电池正极材料。然而,其实际性能受限于高倍率下的缓慢电荷转移和循环稳定性不足。本研究采用简易浸渍法在NVP颗粒表面沉积Nb2O5,旨在提升材料的高倍率性能和长循环稳定性。结构与光谱分析(XRD、电子显微镜、拉曼光谱、XPS和X射线荧光光谱)证实包覆后NVP仍保持良好的结晶性,且Nb2O5均匀分布于颗粒表面而不影响钠离子的可逆脱嵌。电化学测试表明,与未包覆样品相比,Nb2O5包覆样品中Na+扩散系数显著提高,从而提升了高倍率性能和循环稳定性,其中3% Nb2O5包覆样品表现出最高的扩散系数和最优异的循环稳定性。循环伏安和阻抗测试结果表明,包覆样品的表面电容增强,从而促进了钠离子的快速存储。XPS结果显示Nb2O5可清除电解液中的痕量HF,避免了其对NVP电极结构的破坏。长循环测试验证了包覆电极结构的长期稳定性。这些结果表明,Nb2O5包覆是解决NVP电极本征缺陷的有效策略,为开发高性能钠离子电池提供了可行途径。
【无机化学学报】doi: 10.11862/CJIC.20250136
Reaction of the non-substituted/substituted unsymmetric pinene-derived complex [Pt(N^C^N′)Cl] with the aryl isocyanide 2,6-dimethylphenyl isocyanide (CNXyl) afforded a mixture of two isomeric species: the ionic complex [Pt(κ3-N^C^N′)(CNXyl)]Cl ([A]Cl) and the molecular complex [Pt(κ2-N^C^N′)(CNXyl)Cl] (B). Isomer B was almost the dominating product. The structures of the isomer B derivatives bearing —CF3 and —Cl substituents on the pyridine ring of the pinene moiety (5B and 7B, respectively) have been confirmed by single-crystal X-ray diffraction, revealing a slightly distorted square planar geometry with trans-NN^C^N′, CNR configuration (The terminal N atom of the κ2-N^C^N′ ligand is trans to the isocyanide ligand CNXyl.). Isomer B is thermodynamically more stable, as confirmed by theoretical calculations.
【大学化学】doi: 10.12461/PKU.DXHX202406107
螺环化合物因其独特的三维结构和生物活性而备受关注,广泛应用于药物设计和有机合成中。传统螺环化合物的合成需要采用化学计量的氧化剂,条件苛刻且步骤繁琐。本实验以N-酰基磺酰胺为原料,通过电化学氧化即可合成去芳香化的螺环化合物,反应绿色高效。实验教学中,学生将学习电化学合成的基本原理,掌握电化学合成的操作技巧,并理解电化学脱芳香螺环化的合成原理。通过引导学生探究实验机理,理论与实践相结合提高学生的实验技能和科学探究能力,同时培养学生对绿色化学和可持续合成方法的认识。
【物理化学学报】doi: 10.3866/PKU.WHXB202305047
利用取之不尽的太阳能资源进行光催化水裂解制氢是缓解全球能源危机、实现碳中和战略的一项有前景的技术。石墨相氮化碳(g-C3N4)因成本低且稳定性高在光催化产氢领域备受关注。然而,纯g-C3N4存在表面积小、电子转移慢、光生载流子复合快等缺陷,产氢性能通常不佳。本研究通过直接热解硫酸铵和三聚氰胺混合物,成功实现硫物种对g-C3N4氮位点的原位取代,开发出一种高效的硫掺杂g-C3N4 (S-g-CN)光催化剂。系列结构和光谱表征证实硫的成功掺杂。密度泛函理论的第一性原理计算表明S活性位对氢的吸附吉布斯自由能近乎为零(~0.26 eV),揭示S掺杂在优化H活性中间体吸附和解吸过程中起着重要作用。透射电子显微镜和原子力显微镜测试结果表明,S-g-CN具有超薄的纳米片状结构,其片层厚度约为2.5 nm。随后的氮气吸脱附等温线和光电化学性质测试结果表明,S掺杂不仅可显著增大g-C3N4比表面积,而且还能有效提高其光生电子-空穴对的转移、分离和氧化还原能力。得益于材料良好的结构特性,S-g-CN的光催化产氢速率高达4923 μmol∙g−1∙h−1,是原始g-C3N4的28倍,超越诸多最近报道的其它S掺杂g-C3N4光催化剂。而且,S-g-CN的表观量子效率高达3.64%。本研究除了开发一种高效的光催化剂,还将为高性能g-C3N4基催化剂的设计提供有益借鉴。
出版年份
相关作者
相关热词
- 首页
- 上一页
- 1
- 2
- 3
- 4
- 5
- 下一页
- 末页
- 共:5页
- 跳转
- Go
